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PREFACE

This report presents the results of the detailed design

studies performed to determine a firm approach toward

a final specification for a three-axes attitude control sys-

tem for meteorological satellites. The study described

was performed by the Astro-Electronics Division of RCA,

under Contract No. NAS5-3886, for the National Aero-

nautics and Space Administration, Goddard Space Flight

Center. The period covered by the report extends from

25 May 1964 through 13 October 1964.
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1.1 INTRODUCTION

Section 1.0

SUMMARY

The work performed during this study program was directed toward develop-

ing an attitude--control system which would be particularly well suited to space-

crafts Which must perform a meteorological mission; however, the Statement of

Work (5) defined the mission requirements in terms sufficiently broad that the design

study is applicable to a wide range of spacecraft missions. Wherever possible, the

fundamental design procedures are included in each of the subsystems which make up

the complete attitude-control system. The application of these design procedures has
been used to define the method for the attitude control of what the Statement of Work

called the "500-lb. spacecraft. " The 500-pound spacecraft can be considered as an

example on which the design procedures developed in this study have been exercised.

The control system studied comprises three major and nearly independent subsys-

tems. The first subsystem will provide control about the roll and yaw axes of the

spacecraft by a technique of magnetic torquing which is nearly identical to that

planned for the TIROS Wheel spacecraft. The principles of this technique are re-

ferred to as Quarter-Orbit Magnetic Attitude Control (QOMAC). The second major

subsystem to be studied will provide control about the pitch axis of the spacecraft.

This control will be effected through a closed-loop system, comprising a simple

IR bolometer, compensation networks, and a torque motor which exchanges mo-

mentum between a flywheel mounted on an axis parallel with the spacecraft's pitch

axis and the main spacecraft structure. The third subsystem provides control of

the spacecraft pitch-axis momentum by an additional magnetic torquing techniq_ue:, _LA._,

Throughout this report, the attitude-control system will be called either the

FSMTMS (Flywheel Stabilized, Magnetically Torqued Meteorological Satellite)

Control System, or the Gyromagnetic Control System. Both names refer to the

same design.
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1.2 SYSTEM CONSTRAINTS

The study contract contained an evaluation of the system to determine the con-

straints imposed by the launch vehicle and the orbital parameters. The summary

of these constraints is presented in Table 1.2-1.

Based on the launch vehicle and orbital parameters and the constraints imposed by

these, the system was then analyzed to determine the satellite stabilization and con-

trol system parameters. This analysis yielded the parameters presented in Table
1.2-2; however, these parameters represent the design goals of the study program

and are not the results of the study.

TABLE 1.2-1. SUMMARY OF CONSTRAINTS IMPOSED BY THE

LAUNCH VEHICLE AND THE ORBITAL PARAMETERS

Applicable Parameter

Payload Weight

Altitude

Altitude Tolerance

Ellipticity

Inclination

Inclination Tolerance

Sun Angle

Sun-Angle Tolerance

Spin Rate

Spin-Rate Tolerance

Tip-off Rate

Tip-off Angle

Launch Vehicle

Thor Agena

800 lb.

500 N. M.

+50 N.M.*

0.01"

80. 976 ° retrograde

+ 0.81 °*

High-noon orbit

Approx. 0.14°/day

or 5 l°/year

Not Applicable

Not Applicable

0.5O/sec., roll and

pitch*

0.3°/sec., yaw*

Not Applicable

Thor Delta

(258 last stage)

500 lb.

500 N. M.

:t_50 N. M. **

0. 013"*

80. 976 ° retrograde

.t_ 0.84 °**

High-noon orbit

Approx, 0. 145°/day

or 53°/year

125 rpm

:t_ 10 rpm**

Not Applicable

+ 8. 0 ° Nutatlon

Angle**

Environment As per GSFC/NASA document "An Environ-

mental Specification for A Meteorological

Spacecraft Subsystem", dated April, 1964,

and a stated "Q" Factor of 6.0
I

Ground Stations Gilmore Creek, Alaska

I

NOTES:

*These values were obtained from NASA and all are 3 o values.

**These values were obtained from the Advanced TIROS program

(TOS), and all are 3_ values,
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TABLE 1. 2-2. SUMMARY OF THE DESIGN GOALS ESTABLISHED

FOR STUDY PROGRAM

Applicable Parameter

Configuration

Moments of Inertia

(lb. in. 2)

Voltage Available

Vehicle-Induced

Disturbances

Stabilization-System

Weight

Power Used

Pointing Accuracy

Jitter Rate

Lifetime

Telemetry System,
Command System, t

Communications System, I

Ground Stations }

Launch Vehicle

Thor Delta
Thor Agena

• (258 last stage)

See Figure i. 3-i

Iyaw = 430,000

Iroll = 950,000

Ipitc h = 950, 000

-24.5 volts

See Section 2.3.4 of this

See Figure 1.3-1

Iyaw = 90,720

Iroll = 130,317

Ipitc h = 123,487

-24. 5 volts

report for details

88 lb.

10.3 watts

50 lb.

8.0 watts

+ 1. 0 ° maximum half-cone angle about the
local vertical

:L 1.0 ° in yaw

Less than 0. 05 ° see., all axes

Greater than 1 year

Maximum utilization of existing Nimbus

equipment is required.
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1.3 DESCRIPTION OF THE GYROMAGNETIC-STABILIZATION ATTITUDE-CONTROL SYSTEM

Figure 1.3-1 is the elevation view of the gyromagnetic-stabilization attitude-

control system studied as applied to the 500-pound spacecraft. Components are

mounted on top of the struts attached to the sensory ring and to the sensory ring

itself. If the axis of symmetry of the sensory ring is considered the yaw axis,

then the axis of the flywheel assembly (which is normal to the yaw axis) is parallel

to the spacecraft pitch axis. The operation of the stabilization system is such that

the flywheel axis will be maintained normal to the orbit plane at the same time the

sensory ring is forced to face toward the earth throughout the orbit. The flywheel

will spin at approximately 150-rpm about an axis parallel to the spacecraft pitch

axis, while the spacecraft itself will make one revolution per orbit about the space-

craft pitch axis.

the following.

• The

• The

• The

The attitude-control equipment mounted on the strut consists of

flywheel-drive assembly including attitude sensors

roll-yaw control coil

pitch-axis control electronics

The roll-yaw and m omentum-c ont rol elect tonics

The rockets (if required)

Programmer interface electronics

The stabilization-system equipment mounted on the sensory ring includes the

following.

Yo-yo despin mechanism

Momentum-control coil

Nutation damper with expansion chambers

The last three items were placed on the sensory ring primarily to maintain minimum

weight; these items could be mounted on the struts but only with severe penalties in

performance or weight (increases). It would be particularily difficult to locate the

yo-yo despin mechanism on the upper section; the other two items could be moved

more easily, but with approximately a 5:1 increase in their weight if present per-

formance is to be maintained.

Table 1.3-1 presents a weight breakdown of the complete gyromagnetic-stabilization

attitude-control system. The initial design goal was 50 pounds; if the rockets are

removed (which is one of the recommendations of the study), then the final attitude-

control system weight for the 500-pound spacecraft is 41.5 pounds.

Figure 1.3-2 is a block diagram of the complete attitude-control system. The three

major spacecraft elements are shown as the pitch-axis control subsystem, the momen-

tum control subsystem, and the roll/yaw control subsystem; the fourth major part is

the ground station which is actually an integral part of the momentum and roll/yaw

control subsystems. In the design studied, the only direct command to the pitch-axis

control subsystem is the turn-on command.
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The sensorsmountedon therotating flywheelprovideattitude informationdirectly to the
pitch-axis error-detecting elementswhichdevelopdrive signalsto the motor; thesesig-
nals are proportional to the angulardeviationbetweenthe local-vertical andthe yawaxis.
The sensorsalso transmit datato the groundwhereroll/yaw errors are computedand
correction commandsare generatedfor the roll/yaw control subsystem.Thespin-rate
of the flywheelwith respect to the spacecraftis transmitted to groundas a measureof
momentumerror. Thecorrection for momentumis initiated from groundcommand.

TABLE 1.3-1. WEIGHT SUMMARY

Unit Weight0bs. )

Flywheel units - 2 pieces

Housing assembly

Structure on Housing

Amplifier and signal conditioner

Coil bias stepping switch

Computer command control

QOMAC coil and support

11. 34

7.64

1.22

2., _

9O

3.80

2.00

Rockets installed

Fluid damper

Momentum coil

Yo-yo despin device

3.40

6.03

1.60

4.50

Total 44. 93 lbs..

The nutation damper is a completely passive device; it serves as the fine-control

for the roll/yaw axes in that it reduces undesired motion about these axes. The

pitch-axis oscillatory motion is damped by the action of its feedback control.

The subsystem elements shown in Figure 1. 3-2 are described in the remainder of

this report and their interaction with the spacecraft is also discussed. Wherever

possible, existing command and control and data-processing equipments have been

used in both the spacecraft and the ground station.

The power profile of the system studied is presented in Section 7.3; the continuous

power required is shown in Table 1.3-2. The continuous drain after initial align-

ment occurs is 5.33 watts. The peak-demand occurs during initial alignment and

is 14.1 watts.

A reliability and failure-mode analysis was performed for the attitude-control sys-

tem studied. On the basis of the assumptions made in Section 5.0, the probability

of successful operation for one year was computed as 0.923.
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Section 2.0

SYSTEMS ANALYSIS

2.1 COORDINATE SYSTEMS

Several orbital coordinate systems have been used during the Study Program.

The primary systems used in this report are shown in Figure 2.1-1. The _, _, _,

coordinate system is inertially fixed; the _ vector is aloAng the lines of Aries, and
the _ vector is along the spin axis of the earth. The _, b, _, coordinate system is

fixed with respect to the orbital plane; the unit vector • is along the orbit line of
ascending nodes, and the unit vector _ is along the orbit normal. The _, _, n̂, sys-

A A A

tem is related to the X, Y, Z, system by the following two rotations:

A

• the first rotation is around Z and through the angle fl ;

A

• the second rotation is around n and through the angle/.

A ^The r, t, _ coordinate system rotates with the spacecraft; the _ vector is along the
radius vector from the center of the earth to the spacecraft. The rA, _', n̂, system

is related to the _, b, n, system by only the following rotation:

• the rotation is around Anand through the anomaly angle _.

The geomagnetic coordinate systems developed for this report are shown in Figure
2.1-2. The Xm, Ym, Zm system is a geomagnetic set with vectors X and YA ra m

in the geomagnetic equatorial plane, and vector X directed along the line of in-
?n

tersection of the geomagnetic and geographic equatorial planes.

The ^ ^r, ., _, set is a geomagnetic-spherical coordinate system; vector _ is along
a line from the center of the earth to a point in space, and vector _ is normal to

vectorS' in the direction of geomagnetic latitude. The X, ]1, Z , coordinate
system is related to the _, _, _, by the following two rotations:

A

• the first rotation is around the vector _ and through the angle . ;

• the second rotation is around the vector Z and through the angle _.

The X, Y, Z, system is related to the X, IZ, Z system by the following two

rotations:
A

• the first rotation is around the vector X_ and through the angle i ;

• the second rotation is around the vector Z and through the angle -_ ,

2.1-1
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The vehicle coordinate system developed for use in this report is shown in Figure

2.1-3. The nominal orientation of the vehicle is along the ra, ta, nA coordinate sys-

tem; the pitch axis is aiong the vector nA the yaw axis is along the vector r̂, and

the roll axis is along the vector _. To consider deviations from the nominal con-

dition, the following three rotations of the coordinate system are necessary:

• the first rotation is around the ra axis and through the angle _y;
^

* the second rotation is around the 2 axis and through the angle ¢ ;
A

• the third rotation is around the I axis and through the angle 3 .
P

The angle ¢ is actually the roll angle of the vehicle; it is measured by a horizon
A

sensor mounted on a flywAheel with the spin axis of the flywheel along the ! axis.
• A ^

The angle between axis I and the r, n, plane is defined as 7_; this angle is used in

several sections of this report in place of the angle y through the use of the identity

tan _ = cos _ tan (2.1-1)

^ ^ A

Note that the 1, 2, 3, coordinate system, as defined in Figure 2.1-3 is a le_-hand

coordinate system. This was done to be consistent with the derivation of magnetic-

torquing equations previously presented(3).

5̂'

/ / ////

I ^1^ I

I I I

' , A I ,.

Figure 2.1-3. Drawing Depicting the Vehicle Coordinates Used for

Systems Analysis
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2.2 GENERAL MAGNETIC FIELD EQUATIONS

A simple canted-magnetic-dipole moment of 8.1 x 1025 emu-cgs units pro-

vides an excellent approximation of the geomagnetic field in the terrestial-spatial

environment up to a maximum of 6 earth radii. This dipole model has the axis in-

clined from the polar axis of the earth by a value of 11.4 ° (the value of angle im );
it intersects the earth at a latitude of 78.6°N, longitude 70.1°W, and at a latitude

of 78.6°S, longitude 250. loW. This model has been used to predict the perform-

ance of magnetic torquing systems on other RCA programs (e.g., TIROS, Relay)

with exceIIent results.

The earth's field components, due to a dipole source expressed in a spherical co-

ordinate set as shown in Figure 2.1-2, is given by the following equation:

[c]=

2M e
COS

r3

Me
sin v

r 3

o

(2.2-1)

where r is the instantaneous orbit radius and Me is the geomagnetic dipole moment
(8.1 x 1025 gauss-era 3 ).

To perform the analyses presented in this report, it was necessary to obtain the

value of the magnetic field (B) in both the ^ ^r, t, An, and _, _, n̂, coordinate systems.

It was, therefore, necessary to establish relationships between the angles . and _,

and the angles _, i, i_, and ;l (_ = ;in - ;_ )" These relationships were obtained
,_ rn

by successive transformations about the 4, _m, _m, _, _, and _ axes and through

the angles v, _, im, _, i, and _, respectively.

The final expression obtained from the transformations is of the following form

= [M-] _ , M = 2, m22 m23

L _] Lm31 0'32 "33

(2.2-2)

where the "m" factors are trigonometric functions of the six rotational angles. The

term ¢ is transformed into itself; therefore, equation (2.2-2) yields the following:

rn11 = 1; m12 = O; m]3 = 0 (2.2-3)
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Equation(2.2-3) can be solved to obtain the necessary relationships between the

angles v and _, and the angles @, i, i_, and _. These relationships are as given

in the following equation:

= cos -1 I-cos 8 sin_ sini - sin t_ cosi cos _ sini
in m

-I
_ COS cos _ cos _ - sin _ cos i sin _1 jsin p

+ sin _ sin i cos im] (2.2-4a)

(2.2-4b)

The total magnetic field, B, in the rA, tA, _n,

IilB t =

n

coordinate set is then given by:

[MJ [C] (2.2-5)

The use of the matrix operation and trigonometric algebra then yields the following(2)

2M e
B r = _ [cos _ sin _ sin irn

r 3
+ sin _ cos i cos _ sin i m - sin _ sin i cos i m] (2.2-6a)

M e

B t = _ [sin _ sin _ sin i - cos _ cos i cos _ sin i + cos 8 sin i cos i m] (2.2-6b)
r3 m rn

Me

B n = -- [sini cos _ sin i + cos i cos i m] (2.2-6¢)
r3 m

A A A

The values for the _, b, n, coordinate set is obtained by a simple rotation around

vector n_ and through the angle -_ and yields:

Me _" 3

B_ - )- "_ sin i cos i sin 28 + sin ir3 m m

I_ (cos i + 1) sin(28 + l_) + (2.2-7 a)

-_ (cos - 1) sin(28 - _) + sin _ i
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Mer3 { 3_ 3B b - - -- (cos i 1)"_ sin i cos i m cos 2_ sin i - ×
4 m

3

cos (20 - i_) - -- sin i (cos i + 1) cos (28 + _)* (2.2-7b)
4 m

21 1 }-- cos i sin i m cos Q - -- sin i cos i m
2

.e{ }B n = _ cos i cos i + sin i sin i cos i_ (2.2-7c)
r3 m m

For accuracy, it is now necessary to include orbit ellipticity, e, [r = rfS) ], and

orbit longitude motion due to the oblateness precession of the orbital plane and ro-

tation of the earth [ _ = _ ( 8 ) ] .

For an elliptical orbit,

(1 + £)r l (1 + £)(h 1 + rE)
r = = (2,2-8)

I + e cos (8- 8') I + e cos (8- _')

where 8' is the orbit anomaly angle at perigee, h i is the orbit radius at perigee,

and r E is the radius of the earth. Thus,

1 1 1 [1 + e cos (8 (_,)] 3 (2.2-9)

r3 (I + _)3 (r E + hl)3

For small eccentricities, the equation (2.2-9) may be expanded, yielding the follow-

ing approximate relation

1 1 1
-- __ [1 + 3e cos (8- 8')] (2.2-10)

r 3 (1 + e) 3 (r E + hl)3

The precessional rate of the orbital plane due to the oblateness of the earth, _2n,

is given by

_n = 2"°2 x 1°-6 \-_i] (_) c°si rad--':sec. (2.2-11)
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The precessional rate of the orbital plane cpntributes much less to the longitude

motion than does the rotation of the earth, _ because:

360 deg. 15 deg. 1 deg. rad.- - 0.727 _ 10 -4 _ (2.2-12)
m 24 hr. hr. 240 sec. sec.

Therefore,

= - -_ (2.2-13)

The angle between the line of nodes of the geographic and magnetic equatorial planes

and the orbit ascending node can be expressed as:

= _0 + _t (2.2-14)

For small eccentricities,

t

_ 277- (2.2-15)
T

Then,

cvo
r _ (2.2-16)-- i_° + 27T

where Wo is the earth's spin rate (w0 = _m ) and T is the orbital period.

Combining these results yields the final field equations in the Ar, 7, An orbital co-

ordinate set for small eccentricities. These are given in the equation (2.2-17):

B
r

= + 3E cos(e- 8 ° os

(I + _}3 (r E + hz)3

T + sin _ cos i sini
× sin im sin 0 + 277 m

× COS T

o + 2_ sin _ sin i cos iml

(2.2-17a)
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B t

n

(I + E) 3 (r E + hl)3
_ + 3_ cos (8- 8')1 _in

× sin i m sin 0 + _ T 0 - cos 0 cos i sin i m

cos
° + 27T T + cos _ sin i cos iml

(2.2-17b)

B
n M_e I1

(I + £)3 (r E + hl)3

x s_n i
m 7' _1 + cos i cos i m ]

(2.2-17c)

Similarly, the final field equations in the

trieities, are:

_, b, n coordinate set, for small eccen-

B_
M e

(1 + £)3 (r E + hi)3

× sin i cos i m sin 20 + sin i m

)×sin 0 + f)O + -_w TO

I 3+ 3E cos(8- 0") 2

3 (cos i + 1)

3

+ _ (cosi - 1)

× sin
0 - _0 - _277 TO + --2 sin 0

T

277

(2.2-18a)
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I3b

B
n

M _. I
- 1

(l _ _)'_ U E + h_) 3
+ 3_ _os(_- 0') 7

× sin i cos irn

3
cos 2 _ - -- ,sin i (cos i - 1)

4 m

× COS

2 _0 OI 3b! - _0 - -- T sin irn
2 w 4

× cos ÷_o ÷ ) ,7"0 + --
2 Tr 2

sin i m

x COS T _ sin i cos
277 - _ irn

_,11__ Ii(1 + E) 3 (r E + hi )3

× cos i m + sin im sin i cos

(cos i + 1)

cos i

(2.2-18b)

(2.2-18c)
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2.3 GENERAL DYNAMICAL EQUATIONS

2.3.1 Dynamic Equations

The spacecraft described in this report has many of the properties of a

simple spin-stabilized spacecraft. In developing the equations of motion, the fol-

lowing tentative assumptions have been made to determine the performance param-

eters described in Section 3.3 and 3.7 of this report.

• The roll, pitch, and yaw, axes of the spacecraft are the principle

moments of inertia.

• The flywheel spin-axis is aligned with the pitch-axis.

These two assumptions permit the writing of the total momentum of the spacecraft
with reference to the body coordinates _, 5, and _ described in Figure 2.3-1. The

resulting momentum equation is

A ^ A

"H = (Ila_ 1 + If_f) 1 + 12_z 2 2 + 13cv 3 3 (2.3-1)

Implicit in this equation are the following simplifying assumptions.

• The transverse moment-of-inertia of the flywheel is small compared

to J2 and 13 . This is demonstrated in Section 7.2 where the values of

the flywheel and spacecraft are tabulated.

• The polar moment-of-inertia of the damper-fluid mounted on the

axis is negligible compared to 13 . This leads to the assumption that

any momentum-contained fluid has negligible effect on the _ axis of

the spacecraft and is not included in equation (2.3-1).

Euler angles are used to describe the motion of the spacecraft-body fixed axes.

These Euler angles are defined in Figure 2.3-1. The components of the spacecraft

total angular-velocity vectors are as follows

_I : _ cos 8 + _ (2.3-2a)

o_2 : _ sin_ sin Ct + _ cos_t (2.3-2b)

_z3 : _ sin _ cos _t - _ sin _t (2.3-2c)
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Figure 2.3-1. Euler Angles Used to Describe Spacecraft Body Motion

^
Motion of the 1 axis about the total H vector is given by the following equation.

i - H rad./sec. (2.3-3)

As the _ axis rotates about H, the body rotates about the _ axis at the rate _. The

equation for ¢ is as follows

: - (2.3-4)

Both ¢ and ¢ are important in describing the operation of the nutation damper dis-

cussed in Section 3.3. It should be pointed out that equation (2.3-4) is an approxi-
mation of the value for ¢; the value is not a constant (as is implied) but actually is

a function of the angle ¢ . The details of the exact motion of a body with three
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separate and distinct moments of inertia are too complex for discussion here. The

departures from the exact motion have been studied and it can be positively assumed

that, for the values of /s, /2 , and 13 used in the present study, good estimates for

the initial design will result. A complete computer analysis will be initiated when

the final design is more fully specified.

2.3.2 Momentum Considerations

To date, no determination has been made for a number which can be defined

as the best, least, or safest, value for angular momentum to be used in this design

study. RCA has had applicable experience with two types of spacecraft which have

been orbited; there was an order of magnitude difference between their angular

momentum. Both spacecraft performed their missions, but the spacecraft with the

higher angular momentum was less sensitive to external and internal disturbances.

This performance was the basis for the value of momentum which was selected.

The value used throughout the study is 141 inch-lbs.-seconds.

After a number for angular momentum is established, it is possible to arrive at an

optimum design. The criteria was established originally (2) and is summarized in

Figures 2.3-2 and 2.3-3. The Figures show that, to meet a damping time-constant

of 3 minutes, a damper-fluid weight of 11 pounds and a flywheel of 11 pounds are

required. The values are the ones used at the start of the study program. However,

as progress was made the weight totals began to mount until the design goal of 50

pounds total was almost exceeded. A decision was then made to reduce

:_, ill,,_, L| -,_ !

4o ,_ ,2o qlo I.oo _ z,o blo i.o 4_

SYSTEM MOIIIENTUdlSIH i IN-I.e-SEC)

Figure 2.3-2. Dynamic Weight Versus System Momentum
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Figure 2.3-3. Minimum Dyanmic Weight Versus Damping Time-Constant

the damper-fluid weight to 3.48 pounds without affecting the flywheel; the results

of this change caused the damping time to increase to 9.7 minutes. Figure 2.3-3

shows that the optimum total weight for the flywheel and damper for a 9.7-minute

time constant would require only a total of 11.2 lbs. equally divided. Thus, the

present time-constant could be obtained by reducing the flywheel weight from 11

pounds to 5.6 pounds and increasing the damper-fluid weight from 3.5 to 5.6 for

a net weight reduction of 3.2 pounds. However, this change is not recommended

because it would cause a decrease in the value of angular momentum in the system.

Until further experience is obtained, it appears that a time-constant increase is

a better compromise than an angular-momentum reduction. The design curves of

Figure 2.3-2 and 2.3-3 should be considered only as a guide and not as a specifi-

cation.

The speed of the flywheel has tentatively been set at 150-rpm nominal. This value

includes a consideration of the life associated with rotating components, and is con-

sistent with current experience at RCA. Higher speeds may be possible as the de-

velopment progresses, however, doubling the speed would not have the effect of

reducing the total control-system weight by 5.5 pounds (i. e., one-half the flywheel

weight). The flywheels are made up of parts which are approaching their minimum
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size; the masswhichcontributessubstantiallyto the momentumis the scannerwhich
hasanirreducible minimum. Witha minimum momentumof 141in.-lb.-sec, speci-
fied, 150-rpmis not far from the optimumspeedwhenall factors are considered.

2.3.3 Control Considerations

The control dynamics developed for the attitude control system are presented.

The equations obtained are utilized in Section 3 of this report where the specific

control modes and subsystems are discussed.

The fundamental equation defining the attitude motion of the spacecraft when acted

upon by an external torque, T, is

7 : --dHI
dt 1

(2.3-5).

where I signifies the inertial axes. The time rate of change of H with respect to

the inertial axes can be defined in terms of a rotating-axis system by the equation

gH Rz X

7;- 2 7 +;
(2.3-6)

where R signifies rotating axes and _ is the angular velocity of the rotating-axis

system with respect to the inertial system. In general, H has components along

all three axes of the spacecraft. However, for the present system the momentum

about the axes perpendicular to the flywheel (or pitch axis) is extremely small when

compared to the flywheel momentum. It can be neglected when considering the pri-

mary control modes of the system, but it is extremely important in considering

nutation damping. The momentum about the pitch axis is defined as

-_ : Ill,f) + (i_ _)] _ : I_ll _ (2.3-7)

where If and 11 are flywheel and vehicle (without flywheel) moments of inertia about

the pitch axis, Uf is the flywheel rate, and 8_ is the vehicle pitch rate.

Substitution and solution for 7 yields

T: ,till?+ L LJ? ^
d, _ + IH I (w x 1) (2.3-8)
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AA A

The total torque on the vehicle is made up of components about axes I, 2, 3, (T1, T2, T3)

due to external disturbances and components and due to the three types of magnetic

control employed (QOMAC torques TQ, magnetic-bias torques Tun , and magnetic

momentum control torques TMM). Therefore, equation (2.3-8) can be written as

dlHI ), + IHI ^ (2.3-9)

where the subscript f (in T U ) denotes the flywheel.

For this discussion, only secular torques will be considered. The basic functions

of the magnetic control subsystems and the torquing mode that is utilized for each

of these functions are given in the following sections.

2.3.3.1 Initial Alignment

A

The initial alignment of the I (pitch) axis along the _ axis is accomplished

utilizing QOMAC. It is shown in Section 3.2 that

TQ = -TQ2 _ + I'TQ3 [ _ (2.3-10)

where the symbol "-_"indicates an average torque.

2.3.3.2

control.

Control of Momentum About the Pitch Axis

The control of momentum about the pitch axis utilizes magnetic momentum

It is shown, in Section 3.2, that

?MM lYMM I + lY,,M I ^= 2 (2.3-11)

A

It is further shown that the 2 component is an undesired secular cross-coupling term

that may be kept small through proper subsystem operation.
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2.3.3.3 Cancellationof Secular Torques

The cancellation of secular torques caused by a vehicle residual-dipole along

the _ axis is accomplished utilizing magnetic-bias control. It is shown, in Section

3.2, that this cancellation can be made to a high degree of accuracy and is limited

only by the coil-current control resolution.

2.3.3.4

trol.

Tracking of the Orbit Normal

A

The tracking of the orbit normal by the 1 axis utilizes magnetic bias con-

This process can be mathematically expressed from equation (2.3-9) as

TMB - ]HI (- cz2_ + cz3_) : l_ll--d_ (2.3-12)
dt

A

where _ = O_ll
Section 3.2 that

A A

+ _22 + _33 and }2 and _3 have been neglected. It is shown in

YMs : lYMs:l + l? s31 
(2.3-13)

and that the magnitude and phase of _MB and IF I(_o x _) can usually be made equal
so that IF Id'f/dt equals zero and perfect average tracking is obtained (within coil-

current resolution).

It should be noted that QOMAC can also perform this function but only by substantially

increasing control complexity.

2.3.3.5 Correction for External Disturbance Torques

Correction for external disturbance torques _2 and _3, and for momentum-

control cross-coupling torque T_M 2 can be accomplished utilizing either magnetic
bias or QOMAC control.

2.3.3.6 Pitch-Axis Pointing Control

Pitch-axis pointing control is obtained through the transfer of momentum

between the flywheel and the verticle by a motor which is excited by the pitch-axis

stabilization control subsystem. The dynamic equations defining the motion of the

flywheel and the vehicle about the pitch axis can be obtained by summing torques

about each of these bodies as follows.
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My = If_f + O(_f- 81
(2.3-14)

M I : - 11U; + D(_f- _i) (2.3-15)

where Mf is the Motor Torque minus Friction Torque plus TU, M i is the Motor

Torque minus Friction Torque plus 7I, and D is the Motor Viscous Damping.

Combining equations (2.3-7) and (2.3-15) yields

M1 D DH

11 I e 11 l[
(2.3-16)

where

I_ If
1 -

e I 1 + If

Using the Laplace Transform of equation (2.3-16) and solving for Op(s) yields

D(I 1 + I[) + (01)0 S + 1 -'-D ((21)° + (If + 11-)
81(s) = (2.3-17)

where the subscript ( )0 denotes the initial value and S is the Implacian opera-

tor. Equation (2.3-17) is used in Section 3.1 of this report for the analysis of the

pitch-axis- stabilization control subsystem.

2.3.4 Disturbance Analysis

2.3.4.1 Summary of Disturbance Torques and Effects

Table 2.3-1 presents a complete summary of all disturbance torques and a

brief description of their dynamic effects. The development of this table is dis-

cussed in the following paragraphs.
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2.3.4.2 Residual Dipoles

The effect of residual dipoles along the roll- and yaw-axes has been com-

puted utilizing the magnetic-momentum-control analysis presented in Section 3.2.4

of this report; it is shown there that commutating at 1/2-orbit intervals for a yaw-

axis coil of 7.7 ATM 2 produces a 2% change in momentum per 1/2-orbit. There-

fore, a 1 ATM 2 residual dipole would produce 1/7.7 of that value. The residual

dipole direction is constant; therefore, cancellation occurs over the full orbit, and

the torque is cyclic. The same analysis applies for the roll-axis dipole except that

the average magnitude of the earth's magnetic field is greater by a factor of two.

The motion about the roll-axis is computed in the same manner as is the momentum-

control precession torque motion and has a net effect of zero over an orbit (again

because of the dipole-direction constancy).

The effect of a residual dipole along the pitch-axis is computed in exactly the same

manner as is used for the magnetic-bias calculations presented in Section 3.2.3
A

of this report. The cyclic motion about the vector _ is equivalent to the instanta-
A

neous out-of-plane motion of vector 1 with respect to vector _ discussed in that

section.

2.3.4.3 Magnetic Hysteresis Losses

The momentum losses due to hysteresis have been estimated on the basis

of an assumed 15 pounds of magnetic material in the spacecraft. It should be noted

that the analysis used to obtain the loss rate of 0.4% per day is, by necessity, only

an approximation because of limited information available about the distribution of

the magnetic materials. Compared to present spacecraft decay rates, this value

appears very conservative. For example, based on TIROS data extrapolated to a

polar orbit, the best estimate on momentum decay (the FSMTMS and TIROS have

similar total momentum values) is 0.3% per day. However, previous evaluations

of TIROS data indicate that a maximum of 15% of this decay is due to hysteresis

losses; the remaining 85% is due to eddy current losses which will be negligible for

the FSMTMS (the spacecraft is not spinning and the flywheel has almost no induced

eddy currents because of its construction). Consequently, the estimate used here

is ten times the decay rate due to hysteresis that is predicted for the :I_ROS wheel

satellite in a polar orbit.

2.3.4.4 Solar Pressure and Impulsive Disturbance

An analysis of these disturbances was previously submitted(2).

2.3.4.5 Gravity Gradient

A complete analysis of the effects of gravity torques was presented pre-

viously(3).
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Section 3.0

PRELIMINARY DESIGN ANALYSIS

3.1 PITCH-AXIS.STABILIZATION CONTROL SUBSYSTEM

3.1.1 General

The function of the pitch-axis-stabilization control subsystem is to maintain

the yaw axis in alignment with the local vertical after the initial alignment phase

following payload separation. The subsystem must position the yaw axis within the

required accuracy and within a reasonable time. This operation imposes the most

severe dynamic requirement on the control subsystem and was, therefore, of prime

consideration during the study program.

The vehicle is positioned about the pitch axis by means of momentum transfer be-

tween the flywheel and the vehicle. This momentum transfer is accomplished using

d-c torque motor to couple the flywheel to the vehicle. A horizon scanner, mounted

on the flywheel, generates a horizon pulse each time a change from cold space to

warm earth is sensed. A variable-reluctance pickoff coil generates an index pulse

each time a flywheel reference point passes a reference point on the vehicle. For

a particular orbit altitude, this reference point is geometrically positioned so that

the horizon pulse and the index pulse are time coincident when the vehicle yaw axis

is aligned with the local vertical.

A block diagram of the pitch-axis-stabilization control subsystem is shown in Fig-

ure 3.1-1; the general operation of this subsystem is described in the following

paragraphs.

The position error, or deviation of the body axis from the local vertical, is estab-

lished by using a Pulse-Width-Modulation (PWM) Error Detector to measure the

time difference between the horizon pulse and the index pulse. The error sig-

nal is a constant-amplitude, variable-pulse-width voltage; the width of the

error signal is proportional to the angular error. The signal is shaped to an

amplitude modulated voltage by the use of appropriate filtering; this voltage is

properly compensated, by frequency-sensitive networks, and applied to a speed-

control loop (tachometer loop). The voltages from the fixed-speed bias command

and the compensated-position error voltage are compared (using a differential

amplifier) with a signal proportional to the speed in the speed-control-loop error

detector. The signal proportional to the speed is generated by a serial pulse en-

coder mounted integrally with the drive motor; the pulses are converted to a d-c
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Figure 3.1-1. Block Diagram of the Pitch-Axis-Stabilization Control Subsystem

voltage by means of a frequence-to-d-c converter and are smoothed using a simple

lag circuit. The output of the differential amplifier is fed to a power amplifier

which supplies current to the drive motor; the drive motor then applies a torque

between the flywheel and the vehicle to properly transfer momentum and reduce the

position error toward a value of zero.

During initial acquisition, and prior to closed-loop position control the flywheel

speed relative to the vehicle is increased to the speed commanded by the speed bias-

voltage. The initiation of subsystem closed-loop position control is ground com-

manded after the 90 ° Quarter-Orbit Magnetic Attitude Control (QOMAC) turn; and

vehicle momentum less than or in excess of that required to rotate at the orbital

rate is transferred to or from the vehicle by means of the control subsystem. While

the control subsystem is performing this function, a low-gain loop is utilized, in-

stead of the normal compensation, to compensate for potential saturation limit cycles.

The switching is performed as a function of pointing error.

The control subsystem is constrained to maintain the pointing accuracy to within

_=1.0 ° and the jitter rate to a value of 0.05°/sec. or less. The subsystem inac-

curacy is the root-mean-square value of all errors after stabilization (including

control subsystem errors, sensor errors, and resolution errors). Furthermore,

during initial acquisition, the subsystem must acquire control in the presence of

an initial momentum deviation of + 33% of the nominal design momentum (or an

3.1-2



equivalent spacecraft spin-rate of about 8O/sec.) about the pitch axis. The initial

momentum deviation will be the predominate disturbing influence; thus, a recovery

from this disturbance ensures the capability of the subsystem to recover from any

other expected disturbance.

Deviation in orbit height from the planned orbit will tend to cause a fixed error in

pointing accuracy due to the geometric arrangement used to determine the local

vertical. (For a 50-nautical mile deviation from the expected orbit, this error will

be approximately 1.3 degrees.) It is possible that this fixed error may exist;

therefore, the effect of the error on the type of control subsystem should be con-

sidered. Two types of control subsystems are possible: a Type I subsystem re-

quires a fixed position error to maintain a fixed deviation from nominal wheel speed;

a Type II subsystem requires a zero position error to maintain a fixed deviation

from nominal wheel speed. Various configurations of Type I and Type II subsystems

were evaluated and a Type I was selected which uses lag-lead compensation.(4) One

of the major reasons for this selection was the compatibility of the Type I subsystem

with the gravity-gradient torque over an extended period of time. (3) Furthermore,

although the effect of the gravity-gradient torque is small, it will add or subtract

momentum in the direction which will reduce the local-vertical offset to a value

equal to the misalignment between the three principal axes of the spacecraft and the

specified yaw axis. However, using a Type I subsystem, this misalignment can be

kept to less than 0.1 degree.

Assuming the orbit height is the planned height, altitude deviations will still be

present due to the ellipticity of the orbit. In the worst case, an eccentricity of

0. 013 will cause an altitude deviation of approximately +-50 nautical miles, or a

pointing inaccuracy of approximately +-1.3 ° . This error, if present, will be cyclic

at a repetition rate of 1 cycle per orbit. The error pattern will be predictable and

as such can be used in data interpretation or can be controlled by programming a

correction into the system.

The previous errors are time-predictable errors which can be eliminated by ground

command, if required. An additional alternative having considerable merit from

several standpoints is to use a horizon splitter to generate the horizon pulse. This

device utilizes horizon scanners sensing both the change from cold space to warm

earth and of warm earth to cold space to determine the time the vehicle points to

the earth. By splitting this time by use of computer circuitry the local vertical

can be determined regardless of the altitude deviations.

The prime disadvantages of this unit are the inaccuracy of determining the earth to

sky transition and the additional circuit complexity. A further discussion of the

pros and cons of splitting versus non-splitting may be found in Section 3.4.
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3.1.2 Discussion and Parametric Results

3.1.2.1 Error Measurement

To obtain the correct pitch-axis stabilization, the orientation of the ve-

hicle yaw axis with respect to the local vertical must be known. It is necessary,

therefore, to measure the angle in a plane normal to the spin axis between the

local vertical and some reference position on the spacecraft. Assuming the spin

axis has been nominally aligned normal to the orbital plane by magnetic means,

the plane normal to the spin axis contains both the local vertical and the reference

points on the vehicle. The orientation of the vehicle with respect to the local

vertical is measured indirectly by the use of the horizon pulse and the index pulse.

When the orbit height is known, proper offsetting of the index pulse will cause both

the index and the pulses to occur in time coincidence when the spacecraft reference

is in proper orientation with respect to the local vertical. The time difference of

occurrence of the two pulses will be proportional to the angular deviation of the

vehicle from the local vertical. The direction, or arithmetic sign, of the error

is determined by the time relationship of the two pulses.

The block diagram of the Pulse-Width-Modulator Error Detector error measure-

ment device is shown in Figure 3.1-2. The operation is given in the following

paragraphs.

IP--_ F F 2

Figure 3.1-2. Block Diagram of the Pulse-Width-Modulator (PWM)
Error Detector

The horizon pulse (H. P.) and the index pulse (I. P. ) set flip-flop circuits 1 and 2

respectively. The outputs of the flip-flops are fed to a difference amplifier and a

resetting circuit consisting of an "AND" gate and a monostable multivibrator (S. S. )

The outputs of the flip-flops are of the same polarity; therefore, the output of the

difference amplifier is the difference of the two inputs with the sign dependent

upon which signal occurred first in time. When both flip-flops are set by their

respective input pulses, a signal appears at the output of the "AND" circuit which

triggers the single shot (monostable) multivibrator and resets both flip-flops.
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The output of the difference amplifier is then a pulse with the width proportional to

the angular error and the arithmetic sign indicative of the direction of the error.

This pulse occurs once for each rotation of the flywheel, thus, the output of the

error detector is of the sampled-data form. The error-measurement character-

istics are shown in Figure 3.1-3.

ta)
ANALOG

ERROR
o

,b, I I I I I
PULSE

,,, +,I JTJ IA ]]
PWM o

EeROR - t

I HORIZONPULSES

J INDEX
PULSES

(d)
EQUIVALENT + _' "-"_'_"='_'__

O
PAM

ERROR - _

Figure 3.1-3. Error-Measurement Characteristics

Part c of this Figure illustrates the output of the error detector and the error sig-

nal reducing in time and overshooting. Part d of Figure 3.1-3 shows the equivalent

pulse amplitude modulated signal. This equivalence is satisfactory for a linearized

analysis if the areas of the corresponding PWM and PAM energy over each sample

period are equal, and if the sampler is followed by a filter whose largest time con-

stant is at least twice as great as the sampling period. When the substitution of

the pulse amplitude modulated signal for the pulse width modulated signal is made

the error detector can be conservatively represented as an amplitude sampler in

cascade with a zero-order hold. The transfer function of this device has the char-

acteristics, in Laplace form, of
-TS1 - e

H_(S) = S

where T is the sampling period

S is the Laplace operator
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For a low-frequencyresponse system, such as the one under study, this transfer

function can be simplified and described for Bode plot analysis as:

-/T_

T sin o_ T/2 2

H s (/aJ) = T/2 e

or, since the amplitude variation will in this case, be extremely small over
the bandpass, as

-TS

2
H s (S) : e

For the system under study, the flywheel speed and, hence, the sampling time (T)
will vary; this will have the effect of changing the system phase shift because

sampler phase-shift is a function of the sampling period.

This type of error measurement device was tested in a simulation of the Nimbus

system on the analog computer and also on a System Demonstrator at RCA. The
device performed satisfactorily.

3.1.2.2 Parametric Results

The pitch-axis-stabilization control subsystem design is based on the use

of components of the lowest weight, smallest size, and lowest power consumption

consistent with the performance requirements of the system. The design has been

implemented using both analytical and computer techniques to achieve a subsystem

compatible with the requirements of rapid capture-time, acceptable pointing ac-
curacy, and jitter. The subsystem errors due to altitude deviations can be cor-

rected, if required, by techniques which will impose no restraints on the stability

of the subsystem. Therefore, the stability analysis has not included any require-
ments for altitude deviations.

The block diagram of the subsystem was shown in Figure 3.1-1; the interconnection

and the transfer functions of the individual components are illustrated. The transfer

function for the proposed subsystem was previously developed;(4) it is shown again

in equation (3.1-1) for the low error, fine (high) gain condition.

where the constants are defined in Figure 3.1-1 or in Section 2.3.3.
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Thevaluesof the constantsthat will beusedin equation(3.1-1) are basedon the use
of availablecomponentswhichwill yield the required performancefor the subsystem.
Themotor wasselectedonthe basis of: the torque required to position theyaw-axis
within a reasonabletime; dampingcoefficientto allow satisfactory gains; andback
emf sufficient to allow the required speeddeviationwith the availablevoltages.
Thetype of motor selectedhasa K t = 2.34 oz. in/volt, and a D = 0.79 oz. in/rad. /

sec. The K t value was selected so that the power amplifier saturates at 15 volts.

A motor can be selected with a different K t. If the saturation le_'el of the amplifier

changes, another motor could be selected but will require a change in the value

of K a.

The tachometer is a serial-pulse generator with the output smoothed by a frequency-

to-d-c converter. The converter may be characterized as a simple lag circuit with

a transfer function given by
]

The frequency at which this lag circuit has an effect is sufficiently higher than the

subsystem bandpass frequency so that it can be ignored. The gain of the tachometer

system (K f)was selected as 0.2 volts/rad./sec, based on devices previously used
satisfactorily at RCA.

The sensor gain (K s) selected is 1.27 volts/radian and is based on the use of a PWM

with an output ol + 8. 0 volts. The inertias involved are: If = 144 oz. in. sec.2 ,"

11 = 5410 oz. in. sec. 2 ; and, therefore, / e = 141 oz. in. sec. 2.

Using the constants selected, the previously stated approximation for the sample,

and a hold circuit with a sampling time of 0.4 seconds, equation (3.1-1) becomes:

(1 + 0.59 Ka)

The Bode plot of the recommended subsystem, using lag-lead compensation, is

shown in Figure 3.1-4. The tachometer loop closed-loop response is given by

S _I 4.72

E 9.5S + i
C

The transfer function of the compensation amplifier and network which are used in

the low-error region is given by

l[0 ]KeG e
t_Tas+ I .ss + 1

where the higher frequency lag is used for smoothing the error pulses.
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The power amplifier gain was chosen as 30.

With the values of the constants as previously stated, the over-all open-loop transfer
function is:

2.36 (33.3S + I) e -0"2s

S(500S + I) (9.5S + 1) (0.8S + I)

(3.1-3)

This yields a value of K. = 2.36, a natural frequency = 0. 11 rad./sec., a phase

margin of 25 °, and a gain margin of 16 db when the smoothing network for the PWM

produced pulses is included. The final design of the subsystem probably will not
require the inclusion of the smoothing network; however, the Bode plot shown in

Figure 3.1-4 does include it but indicates the effect of its removal. The smoothing
would be required if lead-lag compensation was used. However, the filtering action

of the lag-lead compensation has been shown (see the next section) to be adequate
for this purpose.

tOO --

80

6O

4O

la

0

- 20

-4O

00001

-- PHASE--- _ _ _ _ _ "_ : "r

-- _N i- 200

L I t _'XN -2_o
O00l O.OI OJ I,O IO 0

FREQUENCY (RADI&N$/SEC)

Figure 3.1-4. Bode Plot for the Recommended Pitch-Axis-Stabilization

Control Subsystem Using Lag-Lead Compensation

The coarse (low) gain region required during large-error conditions will be defined

in the next section and the coarse gain, Kcc, magnitude will be determined.
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3.1.2.3 Analog Computer Simulation

An analog computer simulation of the pitch-axis-stabilization control sub-

system was made to determine the response to large momentum disturbances. The

block diagram of the analog computer set-up is shown in Figure 3.1-5. For small

disturbances and steady state operation, the linear analysis made by use of the

Bode plots is satisfactory to determine both subsystem operation and steady state

inaccuracies. The study was, therefore, made to determine the ability of the sub-

system to recover from very large disturbances. The study was general in nature

because design parameters had not been finalized; however, the results indicate

that several modes of compensation would be stable and would provide for recovery
from large disturbances.

As expected, the subsystem response to large disturbances was critically dependent

upon the gain-switching angle (fine-gain region) and the coarse gain. The ability

to use a large fine-gain region and high coarse-gain are important not only because

of stability and fast response, but also because it provides a larger momentum-

change region in which fine gain, and therefore, low error is attained.

The analog computer study showed that a wider fine-gain region can be attained

through the use of lag-lead, or proportional-plus-integral, control than by lead-

lag control. For this and other previously discussed reasons, it appears that lag-

lead compensation is the most desirable. Typical results obtained from the analog

computer study are shown in Figures 3. 1-6 through 3.1-11 inclusive. The ampli-

fiers used were clamped to limit the output to +10 volts; the power amplifier,

however, was limited to a value of from +0 to -15 volts. These limitations imposed

the most vigorous saturation effects to be expected.

Further investigation of the computer results and the PWM error detector for large

disturbances indicated that the error detector logic is such that when averaged over

a period of time, an error of the proper sign will be generated regardless of the

momentum deviation. Therefore, it was concluded that the saturation limits of

the motor, the fine-gain region, and the coarse-gain determine the momentum-

recovery band and the time required to recover.

In analog computer traces shown in Figures 3.1-6 through 3.1-11: Channel 1

is the pulse-width-error from the pulse-width-modulator; Channel 2 is the

error after it is smoothed by means of an 0.8 second lag circuit; Channel 3 is the

deviation of wheel speed about the nominal 150 rpm (15.7 radians/second); Channel 4

is the vehicle speed; Channel 5 is the equivalent torque applied to the motor to

overcome friction_ electrical damping, and provide acceleration; and Channel 6

is the error from the compensation amplifier.

The lag-lead case for a recovery from low momentum are shown in Figures 3.1-6,

3.1-7 and 3.1-8; the time changes in recovery from a step 24% lower and a step

3.1-9



30%lower than the nominalmomentumare shown,respectively, in Figures 3.1-6
and3.1-7 andare 3.7 and5.1 minutes. Figure 3.1-8 showsthe effect of increas-
ing the fine-gain region from +25oto +-90° andillustrates that this increasecauses
the subsystemto becomeunstable. In other runs not shown,thefine-gain region
was increasedto _45° andthe subsystembehaviorwasvery similar to that shown
in Figure 3.1-7.

Figures 3. 1-9, 3.1-10, and3.1-11 showthe lag-lead casefor a recoveryfrom a
44%increaseover the nominal momentum. Figure 3.1-9 showsa recovery in
6.8 minutes, but the subsystemlocks in thecoarse-gainregionwith anerror of
about35o;Figure 3.1-10 illustrates that, with the coarse-gain increasedfrom
2.0 to 3.0 anda fine-gain regionstill maintainedat +-25°, the subsystemis very
highlyunderdamped;Figure 3.1-11 illustrates theresults whenthe coarse gain is
returnedto 2.0 but the fine-gain region is increasedto +-45°. In the last case,
the subsystemstabilizes andlocks in the fine-gain region in 13minutes. Basedon
the dataobtainedfrom the analogcomputerstudy, the coarse-gainshouldbeequal
to 2.0 with a fine-gain regionof +-45° to satisfy the momentum-deviationrequire-
ments.

3.1.2.4 Subsystem Simulator for Pitch-Axis-Stabilization Control

A control subsystem simulator was constructed under a corporate-funded

AR and D program utilizing the pitch-axis-stabilization control subsystem pre-

viously described; however, a lead-lag compensation network was included in

place of the lag-lead. While the parameters used were different from those used

in the analog computer study, the over-all transfer function was closely simulated.

The results were consistent with those shown for the analog computer study for

both transient and steady-state conditions. A photograph of the simulator con-

structed is shown in Figure 3.1-12. The simulator was then mounted on an air

bearing constructed by RCA to provide friction sufficiently low so as to make the

simulation-data useful. The internal design of the pitch-axis loop determines the

damping, this was verified by comparing the simulation data with that predicted

by the analog computer study.
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3.1.3 Preliminary Design of Subsystem

The pitch-axis-stabilization control subsystem consists of the following

components:

Q

The quantity, type,

Horizon Scanner

Pulse-Width-Modulator (PWM)

Compensation Amplifier

Summing Amplifier

Power Amplifier

Frequency-to-d-c Converter

Digital Shaft Encoder

Earth-Detecting Circuitry

d-c-to-d-c Converter

d-c Motor

and failure rate of each component were given previously,

3.1.3.1 Horizon Scanner

The horizon scanner was previously discussed in some detail (3).

Further details are provided in section 3.4 of this report.

(3)
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3.1.3.2 Pulse-Width-Modulator (PWM)

The PWM has been constructed from standard switching-circuit modules,

which have been perfected for space applications, and has been tested on a

simulator built by RCA.

The PWM error detector contains approximately one third the number of parts con-

tained in a digital error detector containing a counter built at RCA. The pulse

width modulator contains a minimum of digital logic; there is no need for special

logic circuits to indicate sign and coincidence or gain switching as would be re-

quired in a digital error detector. Furthermore, a digital counter is more sus-

ceptible to noise pulses and requires a digital-to-analog converter in order to

produce an analog control-signal. The output pulse deviation of the PWM is the

error signal and an amplitude modulated control signal can be obtained from the

PWM output by a simple RC filter (a PWM error detector followed by lag-lead

compensation or proportional-plus-integral compensation would not require the RC

filter). An important advantage of the PWM is that the resolution of the error

detector is limited only by the difference in switching speed of two bistable multi-

vibrators and by amplifier threshold, while a digital system employing a counter is

limited to +-1 binary bit. To improve the resolution of a detector employing a

counter, additional stages must be added thus increasing the complexity. Other

fundamental advantages of the PWM system over a digital system are: the PWM

is lighter, smaller, consumes less power, and has greater reliability.

3.1.3.3 Compensation Amplifier

The compensation amplifier is a transistorized differential amplifier

equivalent to the Philbrick Model PP65 in operating characteristics. By changing
the feedback arrangement, the three compensation methods studied can be obtained.

For the lag-lead compensation of Figure 3.1-13, the transfer function is

e i \ 500 S + 1

where S is the Laplacian operator. To solve for the threshold value of this circuit,

the noise model shown in Figure 3.1-14 must be analyzed. The noise output will
be
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Figure 3.1-13. Schematic Diagrams and Transfer Functions of Various

Compensation-Amplifier Techniques
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Figure 3.1-14. Noise Model for an Operational Amplifier

The input threshold signal at the input is then this value divided by the amplifier

gain from which

e t = eni + env / +

3.1-27



where eni is due to leakage current noise and %_ is due to noise voltage present at

the summing point. The term e_v is less than 50 ;,t, for the amplifier under con-

sideration and %_ : idR i where id -- 10-8amp is the noise drift current of the ampli-

fier. For the lag-lead circuit shown in Figure 3.1-13, the threshold voltage is then

10 -_ x 105 = 10 -3 which is equivalent to an angle of _50/8 I' x 10-3 = 0. 045 degree.

This value could be decreased by reducing the input resistance but would result in

larger-sized capacitors. The lag-lead compensation utilized a time constant of

500 seconds which seems long for transistorized circuitry; however, similar cir-

cuits have been used successfully by RCA on space programs. The leakage cur-

rent of the capacitors is quite small because the only voltage impressed across is

the error voltage in this circuit.

3.2.3.4 Summing Amplifier

The summing amplifier is also a transistorized differential amplifier

equivalent to the Philbrick Model PP65 Differential amplifier in operating char-

acteristics. The summing amplifier will add the compensated error-signal to the

bias voltage and subtract from this sum the output of the frequency-to-d-c con-

verier. The noise threshold voltage of this amplifier will be approximately the

noise threshold voltage of the compensation amplifier. For lag-lead compensation

(gain of 15), the noise threshold of the compensation amplifier predominates.

3.1.3.5 Power Amplifier

The power amplifier is of RCA design. The function of the power ampli-

fier is to amplify the output of the summing amplifier to provide motor-drive power.

A feedback loop from the output of the power amplifier to the input of the summing

amplifier is provided to ensure stability and minimize voltage drift with tempera-
ture.

3.1.3.6 Frequency-To-d-c Converter

The frequency-to-d-c converter used in the pitch-axis control system will be

equivalent to the Solid State Electronics Solid State Freqmeter Model 420. The

device converts the frequency of an input pulse train into a proportional d-c voltage.

Similar units have been used on other space programs at RCA.

3.1.3.7 Digital Shaft Encoder

The digital shaft encoder used is equivalent to the Incrosyn made by Data

Tech. The unit provides two output signals: one output is an index pulse used as

a mechanical reference between the flywheel and the vehicle and is fed into the

PWM; the other output is a pulse train with a repetition rate proportional to the
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relative rate betweenthe flywheelandthe vehicleandfeedsinto the frequency-
to-d-c converter to provide rate feedback. Digital shaftencodersof a similar de-
sign havebeenusedsatisfactorily onpreviousspaceprogramsby RCA.

A tachometeror encoderis required to provide rate feedbackfor motor damping.
Thedeviceuseddoesnot require a highdegreeof precision for this application.
Ana-c tachometercouldbeused,but rectifying circuitry wouldbe required to
producea d-c signal in additionto an indexingcircuit.

Thedigital shaftencoderappearsbest for this application. Thedigital shaften-
coder doesrequire a frequency-to-d-c converter to recover d-c rate voltages,
but hasan indexingcircuit incorporatedin the design.

3.1.3.8 Earth-Detecting Circuitry

There is a period in the orbit when the sun appears in the field of view of

the pitch-axis horizon sensor and is most critical when the sun is at, or near, the

horizon. To prevent this occurrence from introducing large disturbances into the

system, a technique was devised to "enable" the pitch horizon-sensor input to the
PWM with the Vee horizon sensors which do not view the sun. By physically off-

setting the Vee horizon sensor from the pitch-axis horizon sensor in a lead direc-

tion the Vee horizon sensor can be used to "enable" the pitch-axis sensor near the

earth's horizon. The block diagram of the circuitry is shown in Figure 3.1-15.

The circuit would operate as follows: The first Vee-sensor channel to have an out-

put will set the flip-flop enabling the "AND" gate. Upon receipt of an output from

the pitch horizon sensor, the single-shot multivibrator is "set" producing an input

to the pulse width modulator. The single-shot multivibrator, blanks extraneous

noise pulses out of the pitch horizon sensor while the sensor views the earth. The

flip-flop is reset at the end of the earth-blanking period by a single-shot multi-

vibrator.

PITCH HORIZON SENSOR-

VEE SENSOR ,--.I_

NO I SET j"

VEE SENSOR _ _ FF

NO :>

LEGEND:

FF FLIP-FLOP MULTIVIDRATOR

SS SINGLE-SHOT MULTIVIBRATOR

] INVERTER

SS PWM

Figure 3.1-15. Earth-Detecting Circuit
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3.1.3.9 D-C To D-C Converter

A d-c to d-c converter will be required for the pitch-axis-stabilization

control subsystem. The converter consists of an oscillator, a toroidal transformer,

and rectifying circuitry. It is used to improve the efficiency of power transfer to volt-

age levels other than -24.5V d-c, and to provide plus or minus voltage for the PWM
error detector and the differential amplifiers. The d-c to d-c converter will also be

needed to supply voltage to the magnetic torquing coils and to supply bias voltages

of greater than -24.5V d-c to the bolometer if a CO2 band horizon sensor is used.

3.1.3.10 D.C Motor

The d-c motor used to drive the flywheel must meet specifications estab-

lished by the subsystem performance requirements (previously discussed in Sec-

tion 3.1.2 of this report). These requirements are summarized in Table 3.1-1.

TABLE 3.1-1. SUMMARY OF D-C MOTOR PERFORMANCE

REQUIREMENTS

Parameter Performance Requirement

Stall-torque capability

Torque gain

Power capability

Nominal operating point

Motor back EMF

Power consumption

Weight

Life

40 oz. inches, peak

2 oz. inches/volt, nora.

6 oz. inches at 300 rpm

6 oz. inches at 150 rpm

0.5 volt sec/rad, nom.

3 watts, avg.

16 oz. nom.

10,000 hours at 150 rpm, nominal

Several types of motors are currently available which may satisfy these specifica-

tions. These types are as follows:

• D-C torque motor (Inland type)

• D-C torque motor (Printed type)

• 2-phase a-c (Servomotor and Reaction Wheel Drive)

• Synchronous motor
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Thesefour typeswere comparedon the basis of stall-torque capability, power ef-
ficiency, andweight (4); a summaryof the comparisonis givenin Table 3.1-2.
(Thedataare basedonvarious manufacturers'specificationsfor the different
motors.) Gear-train ratios were ascertainedby selectingthe highestratio (and,
hence, thehighest torquecapability for the motor/gear-train combination)con-
sistent with meetingthe poweroutputspecification of 60Zo inchesat 300rpm,

The Inlanddirect-drive d-c torque motor hasgoodpowerefficiency, lowweight,
andacceptablestall-torque capability, especiallybecausenogear train is re-
quired. The motor operatesdirectly from a d-c supply, andthe armature resist-
ancecanbeadjustedwithin broad limits, thuseliminating the needfor anypower
converters, andallowingcontrol over thebackEMF constant. Mechanizationof
the control system is further simplified with this motor becauseit is driven di-
rectly by ananalogsignal thuselin_inatingthe needfor modulatorsor oscillators.

A particular Inlandunit, the T-2170with a 42-ohmarmature winding, meetsall
the important motor specificationsas shownin Table 3.1-3. Operation from a

24.5-volt d-c supply has been assumed; this is standard in most spacecraft. Op-

eration at lower voltages is possible, but tends to consume more power.

The speed-torque voltage relationship for this motor is given by

(l/ /-- ÷ 0.07,¢ "

or, with R = 42 ohms,

1,,_ 0.62 _ll,z : 0.18 :_

The current flow is given by

I - o. 18 _;

These three equations fully describe the steady-state behavior of the motor.

3.1.3.10.1 Operation of Motor Brushes in the Space Environment

Before the otherwise obvious selection of the Inland direct-drive

torque motor, Type T-2170, can be made, special attention must be given to en-

sure proper and reliable operation of the armature brushes throughout the life of

the mission. It is well known that, under normal ambient conditions, ordinary

graphite brushes are ideally suited to their function. The operation of these
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TABLE 3.1-2. SUMMARY OF DATA ACCUMULATED FOR COMPARISON

OF FOUR TYPES OF D-C MOTORS

Motor Type

Printed Type

Torque Motor

Inland Type

Torque Motor

Conventional

2-phase a-c

Servomotor

Bendix 2-

Phase a-e

Reaction

Wheel Drive

Synchronous

Power

Effic iency

High

High

Low

Average

Torque

Efficiency

High

Low to

Average

Very Low

without

gear train

High with

gear train

Low

Very low

without

gear train

Average

wRh

gear train

Weight

Very

High

Very
Low

Average

High

Low

Comments

High torque and power efficiency obtained by use

of large field magnets; thus, motor is large and

heavy compared to others.

ilas very low armature impedance (L0.6 f)),

Would require d-c to d-c converter to operate

from spacecraft power supply.

Has low back EMF constant.

Operates as an ordinary brush-type d-c torque

motor.

Direct drive motor requires no gear train.

Torque and power efficiency obtained by use of

rotor with large number of turns. Field magnet

size is modest.

Armature impedance easily adjusted by changing

wire size in armature. Available tn wide range

of values (10 to 500 ;_), eliminating need for d-e

to d-c converter,

Back EMF constant reasonably high.

Direct drive, no gear traIn necessary.

Operates directly from analog control signal.

Does not complicate control system.

Brush-type motor requires special attention

to ensure long life.

Gear train required to obtain usable speed torque

characteristic.

Motor normally operates at high speed (3600 rpm

no-load speed is typical).

2-phase a-e supply requires power converters.

Modulator required to provide AM signal to con-

trol phase.

Low efficiency degraded further by power con-

verter and gear traIn losses.

Induction motor requires no brushes.

Direct drive induction motor.

Requires no gear train, but has low torque efficiency

and high weight.

2-phase a-c supply and control signal modulator

required.

Induction motor requires no brushes.

Not available as a standard item.

Gear train required to obtain usable speed torque

characteristic. Ratios in range of 20:1 to 40:1.

Motor normally operates at very high speed (6000-

12000 rpm speed is typical). Life limited,

Motor must be driven by controllable power oscil-

lator (VCO).

Efficiency reduced by losses in gear train and

power converter.

Induction motors require no brushes.
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TABLE 3.1-3. SUMMARY COMPARISON OF INLAND MOTOR TYPE T-2170

WITH PERFORMANCE REQUIREMENTS

Parameter

Stall-torque capability

(24.0 volts)

Torque gain

Power capability

Motor back EMF

Power consumption:

(nominal operating

Type T-2170 Motor

Characteristic

40 oz. inch

1.63 oz. inch/volt

15 oz. inch at 300 rpm

0.48 volt sec/rad

2.15 watts from 24.5V

Specification
Characteristic

40 oz. inch

2.0 oz. inch/volt

6 oz. inch at 300 rpm

point)

Weight

d-c supply

14 oz. (+mounting

structure)

3 watts

16-24 oz.

brushes is characterized by low resistance, low friction, and extremely low wear

because of the water vapor in the air. Provided operation was under ordinary at-

mospheric conditions, it would be a simple matter of design to provide a brush-

type motor capable of one or more years continuous operation at 150-rpm motor

speed and a nominal 0.1 amp current flow. However, experience with high-altitude

aircraft equipment has demonstrated that graphite brushes do not perform well under

all conditions. High friction and severe wear catastrophically tend to occur at high

altitude ambients unless the brushes are treated with special additives (often called

filming agents) which permit normal performance under these abnormal conditions.
There is some evidence to indicate that filming additives are effective in vacua as

low as 10 -5 to 10 -6 mm Hg, but operation below this range is questionable. In ad-

dition, such brushes often develop high surface resistance after periods of disuse.

In general, this tendency is not critical because the non-conducting surface film is

quickly broken down after a few revolutions; however, for motors this condition is

unacceptable because it can prevent the motor from ever starting.

A system similar to that reported by Weinreb (20) can be used to establish and maintain

a vapor atmosphere adequate for lubrication of brushes, slip rings, and ball bear-

ings. No attempt is made to hermetically seal these components and thus prevent

loss of lubricant (this technique is not practical); rather, the lubricant is allowed

to evaporate into space at a very low rate. The rate of evaporation is determined

by the properties of the lubricant and the size of the "leak" opening (essentially the
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clearance around the flywheel shaft) as shown schematically in Figure 3.1-16. If

necessary, the effective clearance can be made extremely small by using a laby-
rinth leak path. Under equilibrium conditions, lubricant vapor is continually es-

caping through the leak to the vacuum of space, and is constantly being replenished

as more evaporates from the reservoirs. Thus, a vapor atmosphere is maintained

until the reservoirs are exhausted. Table 3.1-4 contains a list of vapors which are

substitutes for the water vapor and which will provide low wear and low friction be-
tween the brushes and commutators. Procedures have been established to use in

predicting the loss-rate of vapor in the pressure range shown in Table 3.1-4. The

design of seals which will ensure the required oil-vapor pressure for the specified

time is incorporated into the present mechanical configuration of the subsystem.
The procedure was previously discussed(4) ; a summary of the procedure is shown

in Figure 3.1-17.

To determine oil-loss rates, some tests have been run in an experimental setup
similar to that drawn in Figure 3.1-16. The data from two tests are summarized

in Table 3.1-5. The results of Test No. 1 are almost twice the predicted value;

the loss-rate in Test No. 2 is very close to that predicted. The discrepancy in
Test No. 1 may be attributable to an error in measuring weight loss because the

absolute amount was extremely small. The two tests demonstrate that relatively

high ambient pressures can be maintained for long durations at the sacrifice of very-
low lubricant loss-rates. The ambient pressures obtained are adequate for brush-

lubricating purposes and other evidence indicates that slip rings and ball bearings
will also operate reliably in such atmospheres.

t,,,-,-FLY W H [ E L

, / [ I 11 I x x x li ( 1 1 I
I, LEAK PATM

I

Figure 3.1-16. Schematic Representation of Experimental

Vapor-Lubrication System
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TABLE 3.1-4. SUMMARY OF WATER-VAPOR SUBSTITUTES AND

CHARACTERISTICS

Type Lubricant

1-Propanol

Ethylene glycol

n-Pentane

1-bromo-pentane

n-heptane

Diethylene glycol

Triethylene glycol

Tetraethylene glycol

Minimum

Lubricating
Pressure

(mm Hg)

0. 0044

<0.0018

0.018

0.00027

0.0008

<0.001

< 0.001

very low

Vapor

Pressure

at 30°C

(mm Hg)

28.0

0.15

680

13.0

56.0

0.013

0.002

very low

*The relative humidity is defined as:

Minimum LnbricatingPressure

Vapor Pressure

and decreases as the molecular size increases.

Relative Humidity*

Required for

I_brication

(x 10 5 )

15.7

low

2.6

2.1

1.4

low

very low

very low

1000

A

I00

w

no

Figure 3.1-17. Summary of Procedure Data Used to Determine Prediction
of Lubricant Ix)ss-Rate
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3.1.3.10.2 SeIection of Brush-Commutator Materials

Once the particular subsystem for maintaining the desired brush at-

mosphere has been developed, the brush-commutator materials still must be se-

lected. Table 3.1-6 lists the most commonly used types. The copper commutator

and plain carbon (or graphite) brush is the most widely used combination. Coin-

gold or gold-plated commutators are used where corrosion is a problem; rhodium

is used as a replacement for gold when a harder surface is desired; and silver-

graphite and copper-graphite brush materials are used where high current-densities

are present and where low contact voltage drop is desired.

TABLE 3.1-6. LIST OF COMMONLY USED BRUSH/COMMUTATOR MATERIALS

Commutator Brush

Copper Carbon, Graphite, Electrographite

Gold Silver-Graphite

Coppe r-Graphite

Altitude treated Silver-Molybdenum Disulfide

High-altitude treated brushes are designed to be used in aircraft where the proper

atmosphere cannot be maintained. Essentially, small amounts of compounds such

as barium-carbonate, lithium-fluoride, barium-fluoride, or other metallic halides

are added to plain carbon or silver-graphite brushes. These materials form the

low-shear stress film at the brush-commutator interface which is necessary for

low friction and wear. However, under some conditions the interface film is formed

too readily and results in high, or even insulating, contact resistance, while under

other conditions the film may not be formed quickly enough thus causing excessive

wear.

The use of altitude-treated brushes is obviated by creating a controlled atmosphere

adequate to lubricate plain carbon or graphite, and, in general, this is a desirable

feature. Therefore, the most feasible materials for use in this application are:

either copper or gold for the commutator; and either graphite or silver-graphite
for the brushes. (4)

These materials should work satisfactorily if the proper atmosphere is created and

maintained.

3.1.3.10.3 Predicted Lifetime of Brushes

The brush-type motor selected must be capable of 10,000 hours op-

eration at a motor speed of 150 rpm and a nominal average current of 0.1 amps.

For the Inland torque motor proposed, these requirements imply a sliding speed

of 1.25 ft/sec., a total distance travelled of 4.5 x 107 ft., and a total number of
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revolutionsof 9 x 10: Thesespecificationsare within presentdaystandardprac-
tice; the manufacturerrates the motor as beingcapableof more than 1x 10s revo-
lutions underordinary ambientconditionsandloads. If necessary,this predicted
life canbeextendedby usingoversizedbrushes. Also, thebrush current required
will be less than 15%of the continuousduty rating andshouldcontributeto increased
life.

Theoretical predictionsof brush life are not available;however,a certain amount
of empirical informationhasbeenobtained. Themanufacturer(InlandMotor Cor-
poration)gives the following relationshipas anapproximation

• ')

lb_b _

t = 0.05 + x K {3.1-4)
A b 2

The constant K depends on the specific test conditions because values between 2 x

106 and 30 x 105 have been reported. For the application under consideration, the

influence of current flow and back EMF (the second term on the right hand side of

the equation) is not overriding. Using the following conservative values,

I b = 0.1 amp per brush

I b = 15/33 = 0.46 volts/segment

Ab =125x 125= 1.56x 104mil

_ = 30 x 105 mil3/volt x 105 ft.

the wear rate becomes

t = 0.05 + 0.004 mils/10 5 ft. travel

Thus, the electrical component of wear is small; furthermore, it could be made

even smaller by reducing the rotor resistance R and, hence, the value of I' b .

Therefore, the value of the mechanical wear constant (0.05 mils/105 ft.) in equa-

tion (3.1-4) is of principal concern, and a check on its validity would be desirable.

Operation for 10,000 hours at 150 rpm is equivalent to 45.0 x 105 ft. surface travel.

At a rate of 0.05 mils/105 ft., this operation will remove 0.0023 inches of brush

material, or less than 10% of the available thickness in standard motors.

Research on the behavior of brushes operating in extremely low pressure-vapor

atmospheres has been conducted at the RCA Astro-Electronics Division. Some of

the results pertinent to wear rate are summarized in Table 3.1-7. These data in-

dicate that the motor which had no controlled atmosphere exhibited considerably

higher wear than the other units. Even during the controlled-atmosphere runs,

however, wear rates two to three times greater than 0.05 mils/10 ft. were ob-

served. This discrepancy may have resulted from the fact that the test durations
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TABLE 3.1-7. SUMMARYOF DATA PERTINENTTO WEAR-RATE OF
BRUSHESAND OBTAINEDAT RCA

Duration Speed Average Wear Rate
Description Wear

(Lays) (rpm) (Mils) (Mils/lO 6 Ft. )

10 150 0.18 0.16Labyrinth motor seal motor

pressure _ 10_avg.

Brushes: 507o Ag. 50%

Graphite + High Altitude
treatment

Labyrinth motor seal motor

pressure _50 #avg.

Brushes: 50% Ag. 50%

Graphite + High Altitude

treatment

Seal Conductance Increased

motor pressure _ 0.5 _avg.

Brushes: 50% Ag. 507O

Graphite + High Altitude

treatment

Seal Conductance Increased

motor pressure _ 1.0 pavg.

Brushes: Stackpole 566

No seal - motor completely

exposed. Motor pressure

_5 x 10 -6 mm avg.

Brushes: 50%Ag. 50%

Graphite + High Altitude
treatment

15

18

26

150

150

150

130

0.15

0,26

0.39

0.49

0.095

0.13

0.16

0.74

Note s: 1. In all cases, the test unit was placed in a bell jar with an average

pressure of 5 x 10 -5mm.

2. Except where noted, the test unit was inside a container that had a

specified leak-rate to the outside vacuum. An oil reservoir was

also placed inside the container so that the pressure could not fall

below the vapor pressure of oil (from 5 x 10-Sto 5 x 10-4mm.).

The container with increased leak-rate (or conductance) was ob-

tained by placing four holes, 0.055" dia. in an otherwise closed

cannister.

3. Average motor pressures were considerably higher than oil vapor

pressure due to outgassing of other materials inside the container.

4. Wear rates are based on average wear of four brushes in each

motor.
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were so short that brusheshadnot becomefully run in. (In most cases the brushes

had not worn enough to fully conform to the commutator's curvature. ) Furthermore,

it is well known that until an established film is on the commutator, brush wear is

apt to be higher than normal. Nevertheless, the measured data are encouraging

because the extrapolated wear over 10,000 hours amounts to only 7.2 mils in the

worst case, whereas the brushes have a minimum working thickness of 25 mils

(which can readily be doubled or tripled, if desired).

3.1.4 Summary of Significant Parameters and Performance

3.1.4.1 Compensation

The recommended pitch-axis-stabilization control subsystem control uti-

lizes lag-lead compensation and has the following open loop transfer function:

6(S) :
2(33.3 S + 1)e -0"2s

S(5OOS + /)(8os + I)

The following are the constants used in the design of this subsystem.

• Velocity Constant (K,)

• Natural Frequency

• Flywheel Inertia (lf)

• Vehicle Inertia (11 )

• Nominal Momentum ,(f/)

• Horizon Pulse

• Index Pulse

• PWM Output

• Compensation amplifier gain

• Compensating network time

time constants; _1

• Coarse-gain

• Fine-gain Region

• Differential plus power

amplifier voltage gain

• Frequency-to-d-c converter

gain

= 2.0

= 0.11 radians/second

= 144 oz in sec 2

2= 5410 oz in sec

= 2260 oz in sec 2

= 1 volt minimum at 3 msec rise time

= -6 volt at 1 usee rise time

= ±8 volts

= 13.1

= 33.3 seconds

= 500 seconds

= 2.0

= _50

= 36

0.2 volts/radian/second
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• Frequency-to-d-c converter

filter frequency = 60 radian/second

• Motor equivalent to Inland Motor Corporation Type T-2170

3.1.4.2 Power

3.1.4.2.1 Consumption

The expected power consumptions for the subsystem are given in

Table 3.1-8.

The total power given is for steady-state operation at 150 rpm. The peak power

required by the motor-amplifier set during the recovery mode is 12.7 watts. The

peak pitch-axis-stabilization control subsystem power is, therefore, 14.16 watts

(required only during the recovery mode). This is a conservative estimate based

on 6 ounce inches of friction torque.

TABLE 3.1-8. SUMMARY OF ANTICIPATED POWER CONSUMPTIONS

FOR PITCH-AXIS-STABILIZATION CONTROL SUBSYSTEMS

Power Consumption

Unit (watts)

Pulse Width Modulator

Compensation Amplifier

Summing Amplifier

Power Amplifier and Motor (Avg.)

Frequency-to-d-c Converter

Digital Shaft Encoder

Pitch Horizon Scanner

V Horizon Scanner

Earth-Detecting Circuit

d-c-to-d-c Converter (losses)

0.2

0.075

0.075

3.3

0.06

0.2

0.1

0.2

0.05

0.5

Total Power Consumption 4.76

3.1.4.2.2 Ripple

The frequency-to-d-o converter ripple voltage is 2% of the input level.

The motor has an L/R ratio of 0.001 and a resistance of 42_ . The frequency of

the ripple voltage caused by the frequency-to-d-c converter is approximately 4,000

radians/second at nominal speed. The ripple power due to the frequency-to-d-c

converter alone is:

(6 x 0.02 x 30) 2
Pr = = 0.0181 watts

4e [1 + (4000 x 1o-3)2]
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In addition, therewill be ripple power dueto the PWMoutputpulse. Thesteady-
state error at 150-rpmflywheel speedis a pulseof 0.0011seconds duration. The

worst case for ripple power due to the PWM would occur if the pulse saturated the

power amplifier; in this case, the ripple power due to the PWM error signal would be

l fo.oollPr = (17V)2dt = 0.019 watts
42_ x 0.4 sec

0

The sum of the two ripple powers should be added to the average values stated;

thus, the total steady-state subsystem power is approximately 4.8 watts.
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MAGNETIC CONTROL SUBSYSTEMS

General

The magnetic-control subsystems are utilized to:

• constrain the spacecraft pitch-axis along the orbit normal;

• control the total vehicle momentum about the pitch axis (nominally,

the flywheel rate).

Two principles are involved, the generation of the torque, and the effect produced

by the torque on the spacecraft attitude. A heuristic explanation of the recommended

techniques of magnetic control is presented in the following paragraphs and in Fig-

ure 3.2-1.

When current flows through a coil, a magnetic field is set up about the coil such that

the coil exhibits a magnetic axis through its center (see Figure 3.2-1(a)). The coil

is said to have a dipole moment along this axis. When the coil is energized, its di-

pole moment reacts with the magnetic field of the earth to produce an instantaneous

torque; this torque tends to move the dipole moment into coincidence with the earth's

field lines as illustrated in Figure 3.2-1(b). The movement toward coincidence im-

plies that the torque vector is normal to the plane determined by the vectors repre-

senting the dipole moment of the coil and the magnetic field of the earth in the vi-

cinity of the coil. Depending upon the orientation of the coil, the direction of the

torque may be made to lie along, or at right angles to, the flywheel axis of the

spacecraft. For flywheel spin-rate control and, consequently, pitch-axis momen-

tum control, a torque co-linear with the spacecraft momentum axis is required. To

obtain this, the plane of the momentum-control coil is placed parallel to the fly-

wheel axis. Conversely, to effect a change in direction of the momentum axis

(pitch-axis), a torque which is normal to the flywheel spin-vector is required.

Therefore, the coil used to change the orientation of the spacecraft is installed

with its magnetic-axis parallel to the momentum vector. However, the spacecraft

includes a spinning body and will, therefore, undergo gyroscopic motion when sub-

jected to torque which is transverse to the fl_vheel direction of spin as illustrated

in Figure 3.2-1(c). The basic law of the gyroscope indicates that, when a gyro-

scope is torqued at right angles, its spin vector will move to coincidence with the

torque vector. The resulting motion, which gives rise to a change of direction of

the spinning axis, is referred to as precession. Consequently, the total effect of

the two orthogonal coils is to produce an instantaneous torque that both precesses

the momentum axis of the vehicle and changes the momentum magnitude. This ef-

fect is shown in Figure 3.2-1(d).

A complicated change in both magnitude and direction of the earth's magnetic field

with respect to the coil axes takes place as the spacecraft rotates in orbit. There-

fore, utilization of magnetic torquing on an instantaneous basis requires either a

means of sensing the magnetic field in three axes, or an exceedingly complicated
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Figure 3.2-1. Principles of Magnetic Attitude Control
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programming technique requiring on-board ephemeris data and stored magnetic-

field equations. In addition, on-board computation of the momentum-axis attitude

errors is also required. However, because of the stored momentum in the space-

craft, instantaneous torquing is not required because attitude errors can build up

only over long periods of time. Consequently, average torques are generated in

the spacecraft through ground-commanded programmed modulation of the currents

carried in the coils whenever attitude or momentum corrections are required.

For controlled precessional motion to move the momentum-axis normal to the

orbital plane, the current in the coil with its magnetic axis along the momentum

axis is programmed by a technique called Quarter Orbit Magnetic Attitude Control

(QOMAC). The programming technique is characterized by two parameters; the

orbit-angle of the spacecraft (at which torquing is initiated), and the cyclic varia-

tion of coil current (from plus to minus) every one-quarter orbit. The mathemat-

ical description of this technique is given in Section 3.2-2 of this report. In ad-

dition to QOMAC, continuous torquing of the spacecraft is provided using a mag-

netic-bias coil with its axis parallel to the QOMAC coil. This continuous torquing

offsets the residual magnetism of the spacecraft and corrects for orbital regres-

sion. The details of this process are given in Section 3.2-3 of this report. The

QOMAC technique will be utilized in the TIROS WHEEL which has been developed

for NASA by RCA, AED. In this application, the principles are identical. The dif-

ferences lie only in the configuration of the coils and the magnitude of the current

used in producing the magnetic moment.

For momentum control, the current in the coil parallel to the flywheel axis is pro-

grammed in a manner similar to QOMAC; however, the cyclic variation of coil cur-

rent (from plus to minus) occurs every one-half orbit. Details of this technique are

given in Section 3.2-4 of this report.

3.2.2 Quarter Orbit Magnetic Attitude Control (QOMAC)

3.2.2.1 Dynamics

As has been indicated, the current-carrying coil which controls the space-

craft attitude is installed with its magnetic axis aligned with the momentum-axis of

the spacecraft. Also, by convention, the positive dipole moment of the coil, _(_,
is taken in the positive direction of the angular momentum vector. Therefore,

MQ = MQ _ (3.2-1)

The direction and magnitude of the control torque T Q, developed by the interaction
of the dipole-moment of the torque coil and the earth's magnetic field, B, is given

by the vector equation

TQ = _Q × B (3.2-2)

3.2-3



Utilizing equation(2.3- 8 ) of Section2.3.3,

A

It has been assumed that M is parallel to vector I ; therefore, the torque produced

(which is normal to _) must also be normal to vector 7. Such a torque cannot

change the flywheel spin-rate; hence

d !ttl
= 0 (3 2-4)

dt

A A

The change in the vector 1 (expressed by dl/dt ) is, therefore, a change of direc-

tion only and implies a rotation about an axis which is normal to 7. This is the

processional motion having rate _ Then,
p"

= _ × ; (3.2-5)dt P

and hence,

If motion is considered in an _, _, A, coordinate system, however, then _ is the

orbital regression-rate and will be much smaller than _ Consequently,
p"

._Q _ B _ H (_Zp × _) (3.2-7)

In Section 2.2 of this report a complete model for the vector B is developed. Ini-
tially, B is written as

M E

(1 + efl(r L, + h;) s
bf (3.2-8)

Utilizing this result, equation (3.2-7) may be written as

x A _-f Ap I =- pq ( x 1) (3.2-9)
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in which

MEM Q

(l + _?(r E + h_)31_ [

Using reasoning from an analysis of general gyroscopic motion, it can be shown

that, for light-torque loading, the precession motion which satisfies equation

(3.2-9) is given by

_p = - pQ b-f (3.2-10)

This result implies that, for a positive dipole-moment of the coil, the precessional

motion of the flywheel at any instant will be negatively directed about the direction

of the earth's magnetic field.

3.2.2.2 Torque Generation

It is now necessary to show that phasing and cycling the coil current will

produce an effective average direction of the earth's magnetic field and that it is

easily related to the attitude correction desired for the momentum axis. The _.

_,^ n coordinate system will be used in the analysis.

Section 2.2 contains the derivation of the required magnetic-field equations. For

initial study, the following assumptions are made

a) _ : 0

b) im = 0

Based on these assumptions, equations (2.2-18) of Section 2.2 become

_IE (3.2-11a)
B_ - (3/2 sin 2 _ sin i)

R 3

ME
B b : + -- (3/2 cos 28 sin i - 1/2 sin i) (3o2-11b)

R 3

B n = +
ME

(cos i)
R 3 (3.2-11c)
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By programmingthe coil current with the proper phase and with one-quarter-orbit

reversal of direction, (see Figure 3.2-2), it is possible to achieve an average pre-

cession vector which will lie in any desired direction in the orbital plane. Thus,

it is possible to select an average precession-vector normal to the momentum

vector; this will cause the net motion of the flywheel axis to lie in a plane normal

to the orbit plane and will optimize the path for the orbit normal.

Q_
.._
U

-J

0
0

,_ ONE CYCLE-_

J
,,_.--- DELAY TIME.-,-,._,,,qb-._T/4 .--,l_,q_- 1"/4 --_

T ORBITAL PERIOD

TIME FROM

ASCENDING NODE

Figure 3.2-2. Phasing and Cycling of Coil Current in QOMAC Torquing

The components of the earth's magnetic field given in equation (3.2-11) are now

averaged over one cycle of quarter-orbit torquing beginning with an arbitrary de-

lay angle, _s, referenced to the ascending node(3). This leads to half-orbit av-

erages of

77

(3.2-12a)

Bb - 3 (sin i sin 2(is) (3.2-12b)
77

(3.2-12c)

If, now, equation (3.2-10) is expanded and the average values of the earth's mag-

netic field substituted, the following average values of the precession components

are obtained

3
(_Zp)_ = -- (pO sin i cos 2;J s)

77

(3.2-13a)
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3

p)b = 77 " '<_

(ZV), --- 0

(3.2-13b)

(3.2-13c)

The n̂-component of the precession is zero; thus, the precession axis is confined

to the orbital plane. Furthermore, by a suitable choice of the start angle, _)_,

the precession axis may be chosen normal to the momentum axis.

Suppose that the axis, _!_ , about which the average-precession motion is to take

place makes an angle >_with the line of ascending node. Then, the start angle, !) ,

required can be found from the fact that

giving

( _ p)b
tan X - ,,_ (3.2- 14)

\
_ = -- (3.2- 15)

• 2

Furthermore, c_-"_'_\should be perpendicular to the flywheel axis in order that torqu-

ing causes the flywheel axis to move to coincidence with the orbit normal. Figure

3.2-3 illustrates that, because of the cyclic interchange of roll and yaw errors

during orbiting, the desired perpendicularity is achieved when the attitude error

is completely in the yaw and is negative; this occurs when

J .... Cmax (3.2-16)

Depending upon the desired direction of precession, the phase angle, "s_ , at the

moment the attitude clock initiates torque will be either >./2 + m 7,_or (X + 77) 2 + ,, 7:

where m may be 0 or 1.

The average precession rate achieved at the completion of a torque cycle is given

by

: .a[ "_ 2 ,.o 2 3
a_p _(CCp)_ + (cop) b = --#Q sin i (3.2-17)77
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Figure 3.2-3. Geometry of Cm_x and X. Shown in _, b, n, Coordinates

3.2.2.3 Operational Requirements

The QOMAC technique of torquing will be used for two principal functions.

The first function is to produce an orientation maneuver which must be initiated very

soon after the completion of the momentum turn. The momentum turn, which is an

inherent adjustment of the spacecraft to assume the configuration of minimum poten-

tial energy, puts the flywheel spin-axis along the momentum vector. QOMAC torquing

will then be employed to precess the flywheel axis into coincidence with the orbit

normal. The second function of QOMAC is to periodically adjust spacecraft atti-

tude in the event that magnetic-bias torquing fails to maintain the desired coinci-

dence of the inertial-wheel spin-axis and the orbit normal.

To meet the requirements of each of these functions, the QOMAC coil will be de-

signed with two levels of torquing capability. To shorten the time needed to effect

the initial turn, a torquing capability of about 3.5 ° per-torque-cycle is contemplated.

However, to adjust the flywheel axis to coincidence with the orbit normal, finer

resolution is necessary. Because mission requirements necessitate holding the

orbit normal to within + 1°, the lower level of maneuvering capability is to be set

at 1° per-torque-cycle, or one-half the allowable range.
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3.2.2.4 Second Order Effects

3.2.2.4.1 Canted Dipole

The expression for determining the start, angle _s, does not take into

consideration the effect of the canted dipole of the earth's magnetic field. When this

consideration is included in the analysis, the more accurate relationship for de-

termining the start of QOMAC torquing takes the form

I

_s 2 (k- &k) (3.2-18)

where

b
AX = tan-I -- (3.2-19)

a

and

cos i sin i
m

sin im sin

cos _ - sin i cos irn

For the sun-synchronous orbit in which the orbit inclination-angle is very nearly

90 °, sin i may be replaced by unity. If this is done in equation (3.2-19), then the

value of£krangesfrom-i to+ i or+ll.4 ° . For the uncanted dipole, i is
zero and thus Ak is also zero. Therefore, if the effect of the canted nature of the

earth's dipole axis is not taken into account in determining the start angle for QOMAC,

an error as large as 11.4 ° in establishing the average axis of precession may result.

Figure 3.2-4 shows the effect of the selected spacecraft anomaly on establishing the

desired precession axis (assuming an uncanted dipole model of the earth's magnetic

field).

3.2.2.4.2 Programmer Errors

To initiate and control the QOMAC torquing, an attitude programmer

will be provided which can be programmed by ground command. A program of in-

structions to the attitude clock will designate delay time and number of torque cycles

to be executed. A delay-time capability of from zero to a maximum of 4096 seconds,

and a range of torque cycles of from 1 to a maximum of 8 are planned. Section 3.6.5

of this report contains a detailed discussion of the programmer.
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Figure 3.2-4. Effect of Dipole Model on QOMAC Start Angle

The length of time of the QOMAC cycle, which will be set into the attitude clock

before launch, will be based upon the best prediction of the orbital period. It is un-

likely, however, that agreement between prediction and attainment will be perfect;

therefore, the switching times generated by the attitude clock will not be ideal.

The errors is switching-point anomaly will increase monotonically regardless of

whether the attitude clock is fast or slow. These errors can be partially offset by

adjusting the QOMAC start-time to distribute the effect. A computer simulation

program was made on a previous study of a 90 ° -orientation maneuver, under condi-

tions comparable to this study program, for a clock rate 3% fast and 3% slow. A

+3% error amounts to a + 80 miles error in altitude. For no clock-rate error, the

angle between the orbit normal and the flywheel axis is decreased 23 ° in five cycles

and was reduced to 5° in 21 cycles. With the clock rate 3% fast, t._.e angle decreased

20 ° in five cycles, and a 5° angle was reached in 27 cycles. With the clock rate 3%

slow, the angle decreased 18 ° in five cycles, and 5°was reached in 22 cycles. A

clock-fast error increases the time required to acquire the orbit-normal attitude while

the clock-slow error has negligible effect. Therefore, it appears advisable in pre-

dicting the expected orbital period to bias the judgment on the side of a longer period

rather than of a shorter one. It is expected, then, that in the worst-case conditions,

the total time to acquire the orbit normal attitude, ¢, should not exceed 20 orbits.
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3.2.2.4.3 Ellipticity

Utilizing equations(2.2-18) of Section2.2, the following are obtained
for ('_p)_ and (_p )b

fs ]I[ in (30 - _')

- -4,{Wp)°"_= --3 b_Q sini \cos20 sy + 3e • s - sin(6_ s + 0' (3.2-20a)
_ 3

,. 3 _ F- cos (3 _s - _')

((_p)b - ¢ZQ sin i isin 28 + 3 _ L- + cos (6_ + (3')77 S 3 "

G
2 _<,s(0 - 0') I

A
(3.2-20b)

It can be shown that the worst-case change in k occurs when 0s = 0 or 180 ° and

8'= 0, and is equal to 3° for e = 0.013 . For this condition, the magnitude change

is 4%. However, if desirable, the QOMAC-command computation can be developed

so that the time, )_, and ¢max are computed taking into account e and SJ'. This
should not be required unless eccentricities much greater than 0. 013 are encountered.

The worst-case magnitude change occurs when _s = 0 and _'=- 90 ° , and is equal to

6.6% (for e = 0.013 ). At this condition, there is no change in ;,.

3.2.2.4.4 Instantaneous Motion

Only average torques and average motion have been considered thus far.

The desired precession does not build up linearly with time but follows integrated

sine waves, (see equation (3.2-11) of Section 3.2.2.2). Also, rotations are gen-

erated normal to the desired direction of precession. This normal rotation builds

up during the first one-half of each QOMAC cycle but then retraces that history back

to zero over the second one-half of the cycle. The maximum value of the normal

rotation varies with the desired direction of precession. It can be shown that the

largest peak value of normal rotation is generated when the desired direction of

precession is about the negative line of nodes, that peak value being 40% of the de-

sired precession. It is considerably less in many cases, but always has a net value

of zero after each complete QOMAC cycle for the assumed magnetic model.
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3.2.3 Magnetic-Bias Torquing

3.2.3.1 Dynamics

Several factors operate to degenerate the attitude at all times, the two

most significant being the effect of the residual magnetic dipole of the spacecraft

and the effect of the regression of the orbit in space. These two effects can be

minimized by using a current coil (referred to as the magnetic-bias coil) which

torques the spacecraft continuously at a level commensurate with the needs. This

coil is made coaxial with the QOMAC coil and the two are part of the same structure.

Utilizing equation (2.3-8) of Section 2.3.4, the following can be written,

7MB - dt Z + Iffl (_ × _) (3.2-21)

In addition, following the development in Section 3.2.2.1,

&

_B = MMB × 1 (3.2-22)

d
- 0 (3.2-23)

dt

and

T-MI_ = M-MI_ × B = Iff l #MB (-fff × J]) (3.2-24)

where

#MB

ME MMB

(1 + _)3 (r e ÷ hlj3 [t-t I

Combining these four equations leads to the results

A

dl ^

d--'t = (P_4B -bf + _) × I (3.2-25)

If the orbit normal, An, is to be tracked then the flywheel spin-axis, _, must remain

parallel to nAon the average. This infers that the time-rate-of-change of the momentum-
A

vector, 1 , in the rotating system of coordinates will average to zero. This is

A

dl
-- : 0 (3.2-26)
dt
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For this to be true, it is necessary that the right-hand side of equation (3.2-25)
be equal to zero. The orbital precession vector, _, can be written in _, _, n,

coordinates as

: I l( si, i+ cose)

A
Therefore, in order for vector 1 to track vector nA

-- A ^

/ZMB (bf x 1) = - I_] (b sin i + Ancos i) × 7

(3.2-27)

(3.2-28)

3.2.3.2 Torque Generation

Utilizing equation 3.2-11(in = e = 0) , the earth magnetic-field components

are now averaged over a full orbit.

Thus,

(bf)_ = 0 (3.2-29a)

(bi) b 1- sin i
2

(b f) = (cos i)

(3.2-29b)

(3.2-29c)

Therefore, the condition for perfect tracking is that

sini b + _MB cosi × s : -I_-_l(bsini + 7_c,,si)× '] (3.2-30)

If it is now assumed that the instantaneous Anx = 0, then perfect tracking can be

obtained if

_MB

2

This is the required result of the analysis.

(3.2-31)

3.2.3.3 Operational Requirements

After final assembly, the residual magnetism of the spacecraft is nulled

to a small value and an assessment is made of the residual dipole value for each one

of the chief operating modes. A conservative estimate for the inaccuracy in achieving

3.2-13



null is +0.24 ATM2. However, data from previously orbited spacecraft indicate that,

after launch, significant changes in the residual magnetism may occur; a con-

servative estimate is 1 ATM2. To keep the flywheel-axis of the spacecraft pre-

cessing at a rate of 1 per day and thus stay equal to the orbital sun-synchronous

regression, another 0.36 ATM 2 of capability must be added, making a total of

1.61 ATM 2. The magnetic-bias coil proposed has a twenty-four level capability

(in steps of ±0.07 ATM 2 up to a maximum of +1.68 ATM 2). A ground-commanded

spacecraft stepping-switch is utilized to change the dipole level; the command lasts

until the necessary level is reached and the combined cancellation and tracking

functions are produced. Details on the command process are given in Section 3.5

of this report.

3.2.3.4 Second-Order Effect

3.2.3.4.1 instantaneous Motion

A net dipole value of 0.36 ATM 2 along the pitch-axis is required to give

the 1° per-day precession of the pitch-axis; this net dipole produces two components

of rotation instantaneously. The instantaneous rotations vary sinusoidally with time

at the frequency of two-cycles per second. The _ component has a zero-to-peak

amplitude of 0.04 ° with an average of zero, while the _ component has zero-to-

peak amplitudes of +0. 055 and -0.02 ° with an average of +0.07 ° per orbit. The

S-component orbit-average value produces the required tracking rate; the cyclic

motion produces a slight out-of-parallelism between the _ axis and the Anaxis. The

effect of this out-of-parallelism is very small over any single orbit. From equa-

tion (3.2-30) it can be seen, however, that perfect tracking is not really possible

because of this effect. The magnitude of the error is discussed in the following

Section.

3.2.3.4.2 Canted Dipole

A computer simulation that includes both the effects of a canted-dipole

and the long-term effects of the cyclic out-of-parallelism of axes _ and _n was per-

formed on another RCA program. While the results are not directly applicable to

the present system, it has been computed (by proper scaling) that a drift-error no

greater than 1.0 ° in 20 days may be obtained due to these effects for the FSMTMS

system.

3.2.3.4.3 Ellipticity

From equation (2.2-18) of Section 2.2, it is easily shown that integration

over a complete orbit drops out all terms in cos n _ or sin n 8. Therefore, the only

effect of ellipticity on the magnetic-bias is a magnitude change proportional to (1 + e)3

For _ = 0.013, this produces a 4% difference in magnitude which is equivalent to
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approximatelya onestep-changeof the magnetic-bias switch. The switch is stepped

from ground-command on a trial and error basis; therefore, no actual error occurs

if ellipticity is present.

3.2.4 Momentum Control

3.2.4.1 Dynamics

In order to control the momentum of the spacecraft by magnetic means, it

is necessary to produce a dipole normal to the momentum vector. Because the

satellite yaw-axis, _, will nominally be aligned with the local vertical, the normal

to the spin-control coil will be oriented parallel to the yaw-axis. This can be

written as

M_M = IMMMI_ (3.2-32)

If the torque produced by the dipole is written as,

(3.2-33)

then, in a manner similar to Section 3.2.2.1,

A_ _ d bffl _ + Iffl - x I) (3.2-34)
MMM x B - d t ( _p

where it is assumed that _ > > _.

The dipole "MMM has been aligned along the 3 axis; therefore, equation (3.2-34 can
be written as

[ffMMI( IBI)2 _ -IMMMI ( I_1)1 _ - d Iffl _ + IRf (_- _ _) (3.2-35)
dt P

or, breaking this equation into its vector components

dt

and

T--SpIN (3.2-36)

P
(3.2-37)
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Therefore, from equations(3.2-36)and (3.2-37), boththe magnitudeandthe direc-^
tion of the momentum-vectorare changedby the action of a dipole alongthe 3axis.
Any changein direction mustbeconsideredanundesirableeffectbecause,ideally,
the coil shouldchangeonly the magnitudeof the spacecraftmomentum.

3.2.4°2 Torque Generation

Initially it will be assumed that the ^ ^ n n ^i, 2, 3 axes lie along the^r, t, , axes

with I along n, 3 along rA, and _along{ _. By referring to equation (2.2-17) of Sec-

tion 2.2, it is apparent that, for the sun-synchronous orbit inclination of 99.1 de-

grees, B t varies, essentially, as the cos 8. Therefore, if the coil dipole-moment
is a half-orbit square-wave switching at -_ (8 = 270 °) and +t_ (8 = 90°), then the

orbital-momentum-torque profile will be a rectified sine-wave, and a net increase

or decrease in momentum can be obtained over half-orbit multiples. Furthermore,

the B field component contained in the inherent precession term of equation (3.2-37)
is relatively weak for approximately polar orbits (such as the 99.1 ° inclination con-

sidered here). Thus, the attitude-deviation introduced by momentum-control opera-

tion is small and can easily be corrected during the occasional QOMAC cycle. To

increase spin-rate, the dipole moment should be switched to the negative yaw direc-

tion at _ = 270 ° and to the positive yaw direction at _ = 90°; the reverse phasing

applies if the spin-rate is to be decreased.

Utilizing the equation for B t (in Section 2.2) for (13 ])2 in equation (3.2-36) yields

-- in _ sin i sin(C6 _ + _0 )

TSPIN (1 + _)3 (r e + hi)3 rn

- cos _ cos i sin i m cos (CO + _0 )

"1

+ cos _ sin i cos irn I

A

+ 3_ Icos(_ - _')sinO sin(C_ 4- _o)sinim

r'-

- cos (8 - #')eos 8 cos (C_ + _0 ) cos i sin irn

+ cos(_- _')cos fl sin i cos irnl!'_(O ) (3.2-38)
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where
c_

U ¢- _ , (-1) _ '2 £'"n O- -- -2 V
n=1

and

T
o o

277

The switching function _ (U)assumes the dipole moment of the MASC coil to be along

the positive yaw-axis at the ascending node. If the phase of the square wave were

reversed, then the torque would be in the opposite direction.

A A

Integration of equation (3.2-38) from -b to +b and division by _ yields the average

spin torque

..... < -- -- -- 1 -- COS

T_pI'¢ (I + c)3 (r E + DI)3 _ 77(1 - C 2) C x'ZO

× COS

77C
+

2

sin i cos i m

_C

3 ¢ sin i m sin 2 I
cos _0 cos _!' (C - "2 cos i)

77C(4- Ce)
7

+ ,sin _0 sin 2'(2 + C cos i - C2)[
..J

k

3 c sin i cos i m cos _' I
\

+

4 i

(3.2-39)

For e = Oand C = 0,

TSpIS

2 M E MMM

77(r E + hl )3

(sin i cos i m - cos _ cos i sin i m) (3.2-4O)
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For the sameassumptionsas were madeto developequation(3.2-40) it wasshown(3)

that the precession-momentumaddedorthogonallyto the flywheelspin-axis, HpREC, is

-2 M E MMM

HpREC = ( sin i sin im cos _ + cos i cos im) (3.2-41)
(rE + hl)3 cz0

where w0 is the vehicle orbital-rate.

The angle by which the spin-axis precesses in the course of a one-half orbit is

HPHEC [_b = tan -1 _ (3.2-42)

3.2.4.3 Operational Considerations

Figure 3.2-5 illustrates the relationship between the coil magnetic-dipole
moment and the generated-torque about the spin axis. This curve is drawn for zero

eccentricity (equation 3.2-40). The maximum-minimum limits correspond to

angles of 0° and 180 o, respectively. Thus, to produce a nominal average-torque of

1000 dyne-cm about the spin axis, it is necessary to provide a coil dipole-moment

of about 8 ampere-turn meter 2. This value of torque is equivalent to a 2% change

in flywheel spin-rate; thus, 5-cycles of momentum-control torquing would be re-

quired to change the flywheel rate from 5% high to 5% low (or vice versa).

3.2.4.4 Second Order Effects

3.2.4.4.1 Attitude Errors

It was shown(3) that roll- and yaw-attitude errors produce a slight de--

crease in the magnitude of the available momentum torque. Figure 3.2-6 shows
this effect.

For large pitch-errors which can occur during initial lock-on of the pitch-axis servo,

it was shown(3) that the switch-angles should be changed to obtain the same momentum

torque. Figure 3.2-7 shows the new switching-angles as a function of pitch-axis error.

3.2.4.4.2 Switching Errors and Orbit-Start Angle

The B t field is not strictly a cos 0 variation because of the cant-

ing of the earth's magnetic field with respect to the earth's spin axis (by angle

i, 11.4o). The ideal switohpoints are located at the two spacecraft anomaly
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angles closest to the earth's magnetic-dipole axis. This optimum switching-angle

is given by

: tan_l/COS i sin im cos _ - cos irn sin i_

sw sin im sin _ /
(3.2-43)

or when B = 0.
t

The ideal switching, therefore, depends upon the longitude of the orbit ascending-

node. Figure 3.2-8 indicates that the selection of ms_ = 90 ° and 270 Oresults in a

maximum deviation on only 1.2 ° from the optimum as defined by equation (3.2-43).

The approximation, made for the sake of operational simplicity that the switching

angle will have a negligible effect on the attainable spin-rate adjustment, can be

observed by examining Figure 3.2-9. This figure is drawn for that orbital loca-

tion which results in the greatest sensitivity of spin-torque to the switching

anomaly-angle.
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3.2.4.4.3 Eccentricity and Orbit Precession

Ignoring the nominal eccentricity of 0. 013 in equation (3.2-39) results
. _ 0 °in a maximum change in average spin torque of 3 1%; this occurs at _ 0

(J' : 180 o. Because of this small effect of the anticipated eccentricity on average

spin torque, it is reasonable to base performance predictions on circular orbits.

Ignoring the effects of the term C (i. e., letting _ be the average value during the

torque cycle) results in a maximum change in average spin-torque of 1%. Torquing

occurs from -_/2 to +_/2;therefore, the average value is at ¢_= 0, or _ = _0 : °°"
This change is so small that the term C in equation (3.2-39) can be neglected.

3.2.4.4.4 Precessional Motion

The precession per-orbit can be determined by the substitution of ap-

propriate values in equations (3.2-41) and (3.2-42). Figure 3.2-10 indicates the

anticipated precession versus the desired average-spin-torque. As anticipated,

the precession is very sensitive to the location_f the orbit ascending-node. How-

ever, even for a continuous average-spin-torque value of 1000 dyne-cm, the spin-

axis displacement should not exceed 1° per orbit.

3.2.4, 4.5 Instantaneous Motion

In addition to the change in flywheel speed, the magnetic torque develops

small changes in the direction of the pitch axis. The component of rotation about
the b axis increases sinusoidally to a peak value at the mid-point of the cycle (i. e.,

at the equator) and decreases to zero at the end of the cycle. Conversely, the

component of the rotation follows a cosine wave superimposed on a constant, thus

causing a net value to be developed each cycle. As discussed in the previous section

for consecutive cycles, the direction of the coil-dipole is reversed with respect to

the vehicle axes. BecauseAof this, the above rotatio_as repeat in sign. Thus, there

is a net rotation about the _ axis but zero about the b axis for any number of con-

secutive cycles.

The magnitude of the pitch-axis precession varies with the position of the earth's

magnetic pole. In the worst case, the zero-to-peak amplitude about axis _ is 0.21 °

while the net accumulation about axis _ is 0.42 ° per MASC cycle.

3.2.5 Coil Designs

3.2.5.1 Magnetic-Bias Coil Requirements

As discussed in Section 3.2.3.3, a maximum dipole size of 1.6 ATM 2 is

required. The finer the available resolution of this dipole, the less frequently it

will be necessary to reset the bias-coil or to supplement the bias-system with
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QOMAC cycles. It was previously shown (4) that, for a 0.07 ATM z resolution, it

will take approximately 20 days to drift through a +1 ° deadband (or 0.1 ° per day).

This is considered satisfactory in terms of the required QOMAC duty cycle.

3.2.5.2 Momentum-Control Torquing Requirements

As shown in Table 2.3- 1 , the major disturbance tending to change the

momentum magnitudes is due to hysteresis losses; it produces a change of 0.4%

per-day or 10% in 25 days. Therefore one should conservatively expect to re--

quire momentum-control torquing at 20-day intervals for the pitch-axis momentum

specification of ±5%. The coil has been sized to produce 7.7 ATM 2 which is equiva-

lent to 1000 dyne-cm torque capability, or a 2% change in momentum per one-half

orbit. Therefore, 5-cycles are required to correct for a ±5% change.

3.2.5.3 QOMAC Torquing Requirements

The operational coil requirements are discussed in Section 3.2.2.3. It was

shown(4) that a dipole moment of 5.85 ATM 2 produces a maximum motion of 1° per-

cycle. The coarse mode, achieved by increasing the applied potential from 7.0 volts

3.2-23



to 24.5volts, permits a maximumprecessionrate of 3.5° per-QOMAC-cycle
(1/2 orbit). Usingthe attitudeclock, a maximumof 8 of thesecyclescanbe
programmedwith oneset of commands.

Thefrequencyat whichQOMACwill beusedis a functionof several factors. First,
the magnetic-biascoil-resolution error canproducea 0.1° per-daydrift; second,
from Section3.2.3.4.2 the inaccuracyin tracking the orbit-normal canproduce
approximatelya 0.1° per-day drift. Therefore, the total requirementdueto
magnitude-biaserrors is 0.2° per day. However,one-half of this drift maybe
cancelledby occasional(once-a-week)shifting of the magnetic-biasdipole, leading
to a 0.1° per-day drift that QOMACmust correct.

In addition, whenevermomentumcontrol is used, a precessionof 0.42° (worst-
case)per-cycle is obtained,or 2.1° per 5-cycles. This occursonceevery 20days.

Otherdisturbancesare notexpectedto causemore thananadditional0.15° per-day
error (themajor causebeingdueto the gravity-gradient torque causedby anas-
sumed1.0° pitch-axis error).

Therefore, if all motion is addedin a scalar fashion(worst-caseconditions), the
QOMACsystemwill beturned on for onecycle onceevery 4 days(to counteract
a total 0.25° per-day drift), andfor anadditionaltwo cycles onceevery20days
(to counteractthe momentum-controlprecessiondisturbance). This, of course,
is anextremely conservativeestimate. Experienceonotherprograms indicate
that a frequencyof oneQOMAC-cycleper weekis a more realistic estimate.

3.2.5.4 Coil Parameters

The equations defining the anticipated attitude- and momentum-control as

functions of the applied coil-magnetic-dipole moments (_1 = NL4) were previously

presented. (3) Therefore, the size of the coils which are necessary to produce the

desired QOMAC, magnetic-bias, and momentum-control dipole moment must be

determined. Although these coils could be wound in various shapes, the space-

craft permits the installation of coils which are wound in a simple circular cir-

cumference. The weight-current product of such a coil can be expressed as

16 _/ _ M2
_l -

VD 2
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where

is the massin kilograms

! is the coil-current in amperes

p is the resistivity in ohm-meters

7 is the density in kilograms per cubic meter

M is the dipole moment in ampere-turn meter 2

V is the supply voltage in volts

D is the coil diameter in meters

To minimize this product, the wire material should be selected to result in a mini-

mum density - conductivity product (7p). Aluminum gives approximately a 2:1 ad-

vantage over copper in this respect. Furthermore, it is desirable to maximize the

circumference diameter, D, within the installation limits of the spacecraft.

If the polarity of the potential, V, cannot be reversed to switch the direction of _!,

it will be necessary to install the coil in a bridge arrangement, or to double the g !

product for a center-tapped configuration. Because fewer components are re-

quired for the latter configuration, a sacrifice in the g l product appears warranted

for the sake of reliability. Actually, these polarity considerations only apply to the

QOMAC coil which uses both the -24.5 and -7 volt supply; all other magnetic torquing

will be accomplished with the dual-polarity 7.0 volt supply.

The desired wire-diameter satisfying the operational requirements can be expressed

as follows for coils wound in a circular fashion:

d = 17vDV

This diameter must be approximated to the nearest standard size. Furthermore, it

is not deemed advisable to utilize aluminum wire of a diameter smaller than the

No. 32 AWG size.

The recommended QOMAC-coil parameters are given in Table 3.2-1. The Magnetic-

Bias coil parameters are given in Table 3.2-2. Figure 3.2-11 shows the weight-

current plot for both coils. The weight values for the QOMAC coil should be doubled

because of the center-tap configuration.

The momentum-coil was designed for a maximum disturbance-torque of 1000 dyne-cm,

or a spin-decay of 87 rpm per day. This requires a magnetic dipole-moment of 8 ATM 2.

The coil parameters are given in Table 3.2-3. The final dipole moment of 7.7 ATM 2

differs from 8 ATM 2 due to considerations of the available wire-characteristics and

corresponds to a maximum disturbance-torque of 970 dyne-cm.
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TABLE 3.2-1. QOMACCOIL PARAMETERS

Parameter Characteristics

Type of coil

Power supply

Diameter

Area

Circumference

Wire size

Total weight of wire

Number of turns

Resistance

Current

Power

Dipole moment

Degrees per torque cycle

C enter-tapped circular

-24.5 V High torque mode

- 7.0 V Low torque mode

28.5 inches

0.413 meter 2

7.46 feet

26 gauge

1.0 lb.

285 per tap

142 ohms per tap at 25°C

0. 174 amp. High-torque mode

0.050

4.26

0.35

20.4

5.8

3.5

1.0

amp. Low-torque mode

watt High-torque mode

watt Low-torque mode

ATM 2 High-torque mode

ATM 2 Low-torque mode

degrees High-torque mode

degrees low-torque mode

There are two possible locations on the spacecraft for the momentum coil. Located

in the control package, the diameter of the coil would be 22 inches; this diameter

is increased to 48 inches by placing the coil in the sensory ring. Figure 3.2-12

shows the weight versus current plot for each coil size. For a given dipole-

moment, the larger coil has a much lower weight-current product. For a given

current, there is a 5-to- 1 ratio in the weight and in the number of turns needed

to obtain the required dipole-moment. Thus, the 48-inch-diameter coil in the

sensory ring should be used.

The effect of temperature variations on all the coils was investigated (4). Tem-

perature effects should cause no problems.
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TABLE 3.2-2. MAGNETIC-BIAS COIL PARAMETERS

Parameter Characteristics

Type of coil

Power supply

Diameter

Area

Circumference

Wire size

Weight of wire

Number of turns

Circular

±7.0V

28.5 inches

0,413 meter 2

7.46 feet

31 gauge

0.11 lb.

200 per tap

Resistance

Current

Power

Dipole moment

Dipole moment intervals

Degrees per day

318 ohms per tap at 25°C

0.020 amp. max.

0. 143 watt max.

1.68 ATM 2 max.

0.07 ATM 2

4.1 degrees max.

0° 085 degrees resolution

TABLE 3.2-3. MOMENTUM-COIL PARAMETERS

Parameter Characteristics

Type of coil

Power supply

Diameter

Area

Circumference

Wire size

Weight of wire

Number of turns

Resistance

Current

Power

Dipole moment

Circular

+7.0 V

48 inches

1.17 meter 2

12.6 feet

27 gauge

0.32 lb.

137 per tap

146 ohms per tap at 25°C

0. 048 amp.

0. 336 watt

7.7 ATM 2
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3.2.6 Summary of Parameters

Table 3.2-4 summarizes the achieved torques and the perturbations due to

these torques for all the magnetic-control subsystems.

TABLE 3.2-4. SUMMARY OF MAGNETIC-TORQUE-CONTROL

C HARAC TERISTIC S

Torquing Mode Desired Effect

Magnetic Bias Torque

QOMAC

Quarter O__rbit Magnetic
Attitude Control

Slow precession of pitch

axis of 1° per day to fol-

low regression of sun

synchronous orbit plane.

Momentum Control

Slow precession of

pitch axis in either of

two modes to provide

control of pitch axis

pointing direction:

(_) Coarse mode -

7 ° per orbit capa-

bility, used for
90 ° turn

(_) Fine mode - 1° per

cycle (1/2 orbit),
used for attitude

trimming as re-

quired

Change flywheel speed

to compensate for initial

momentum errors or ac-

cumulated action of dis-

Perturbations

Sinusoidal rotations, two

cycles per orbit:

(_) 0.04 °amplitude about

_, zero average

(_) +0. 055 to -0.02 ° peak

to peak about b-

Slow precession of pitch

axis normal to desired di-

rections; rotation builds up

during first half of cycle

and then retraces this

history back to zero during

second half of cycle. The

precise variation of rotation

with time and the magni-

tudes involved vary with the
axis of desired rotation.

Worst case magnitudes are:

(_) Coarse mode-l.35 °

peak, zero net per cycle

(_) Fine mode- 0.39 ° peak,

zero net per cycle

Slow precession of pitch axis;

components of rotation for

worst case position of mag-

netic pole:

turbance torques. Capa-

bility of +3.1 rpm per

cycle (1/2 orbit, from
+b- to -b-or from -b- to

(_) 0.42 ° accumulation per

cycle about _ axis

(_) 0.21 ° zero to peak am-

plitude about b- axis,

with zero net accumu-

lation per cycle.
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3.3 NUTATION CONTROL SUBSYSTEM

3.3.1 General

Basically, the nutation-control subsystem provides the fine-control of the

roll/yaw axes even though there is no direct sensing, negative feedback, amplifying,

and torquing, as there is in the pitch-axis servo. Each of these elements of con-

trol are contained in the passive operation of the nutation damper. The detailed op-

eration of the nutation-control subsystem was previously presented( l, 2, 3).

3.3.2 Description of Spacecraft Motion

Figure 3.3-1(a) shows the spacecraft and inertial coordinate systems as

developed in Section 2.1 of this report. Nutation can be defined as undesired motion

about the roll or yaw axis at any point in the orbit; therefore, it is assumed that for

the discussion to follow, the nA, _, At, coordinate system is inertially fixed. This as-

sumption is justified because the period of nutation is more than three orders of mag-
A A

nitude smaller than the rotation period of the n, _, r, coordinate system. The total

angular" momentum, H, is shown parallel to the _ and _ axis as would be the case in

normal operation of the spacecraft after it has been placed normal to the orbit plane

(defined by tA - _. Although initial alignment is shown between the spacecraft and

inertial axes, successful operation of the nutation damper does not depend on this

alignment. For example, the assumption is made that all of the momentum is paral-

lel to the orbit normal, n̂ ; however, a portion of the momentum can be in the fly-

wheel but all of it need not be in the flywheel, and a portion may be in the spacecraft

(which, during initial recovery, will be rotating in either direction about,A). Section

3.7 of this report presents a discussion of the launch-mode and the initial alignment

conditions.

Figure 3.3-1(b) shows the spacecraft coordinate nutating about the total angular-

momentum vector, H, which is still aligned along the orbit normal. A plane-view

showing the motion of each axis is most difficult and is, therefore, implied by as-

signing the three velocity components to each axis, co1, w2, and co3. That portion

of the total momentum in the flywheel is given by I[o_ i. The angle 8 shown in Fig-
ure 3.3-1(b) is the displacement of the pitch-axis, _, from the desired orbit normal

direction, nA , as a result of an induced disturbance from the condition associated with

initial alignment. In either case, all spacecraft axes are misaligned from their

desired position.

The values of wi, °_2' and a) 3 may be expressed in terms of Euler angles by three
successive rotations: the first ¢ is a rotation about the inertially fixed n_ direction;

the second is about tAhe line of nodes and through the angle 9 (which, in this case, is
the line w which the 3 axis has moved to after the ¢ rotation); the third rotation is

A
about the I axis and through the angle 8. These three rotations may be expressed as

components of the total angular velocity vector, _, as follows
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_I = _ cos 0 + ¢ (3.3-1a)

cz2 = _ sinOsinCt (3.3-1b)

: sin cosit (3.3<c)

There are no terms containing 0 because the assumption is made that 0<< ¢, ¢ ;

this means that, during a single rotation of the _ axis about the Anaxis, the angle 0

does not change measurably.

The total momentum of the system containing the spacecraft, flywheel, and damper

may now be written in the form of the following vector equation using Figure 3.3-1(b)°

: (]1 °_1 + If (zf) _ + [2 °J2 _ -t 13 cz 3 _ (3.3-2)

Because H is a vector defined in the body coordinate system, it is necessary to con-

sider the effect of motion with respect to inertial space of the coordinate system.

To do this, the following equation is used

: at7 + y× f7 : o (3.3-3)

where the subscripts I and R refer to the inertial and rotating systems respectively.

The zero on the right side of equation (3.3-3) refers to the fact that after the space-

craft has been disturbed the resulting motion is not under the influence of external

torques. Before substituting equations (3.3-1) and (3.3-2) into (3.3-3), the follow-

ing and temporary assumptions are made

12 = I s
(3.3-4a)

(_f - (_1 = constant : k (3.3"4b)

The first assumption implies that the moment-of-inertia about the roll-axis, a

principal axis, is equal in magnitude to that about the yaw axis, also a principal axis.
This will not be the case in the final system, but the effect on the performance of

the actual inertia distribution will be small. No proof of this statement is presently

available because the manipulation of the Euler equation with actual moment of inertia
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valuesrequires computersimulationoutsidethe scopeof this studyprogram. It
is, however, possibleto showthat the major differencebetweentheassumed
inertia distribution andanactual distribution lies chiefly in the period required
to dampout an initial disturbance. Thespatial motionof the bodyaxis for three
non-equalprincipal moments-of-inertia are developedelsewhere(2).

Thesecondassumptionconcernsthe conditionimposedbythe closed-loopoperation
of the motor driving the flywheel. Whenfinal lock-on is obtained,the constant, k,

will be numerically equal to the flywheel speed, _I (i. e., about 150 rpm). The
initial value of oJ; will be associated with the error associated with spin-down

(i. e., between 1 and 2 rpm).

When equations (3.3-1), (3.3-2) and the assumptions of equation (3.3-4) are sub-

stituted into equation (3.3-3), the resulting equations lead to a solution of w2 and

w3 in terms of known system values. The results are expressed in equations (3.3-5).

[_ + l J (3.3-5a)

w 1 (13 - 11) lfczf
- (3.3- 5b)

13 l 3

The results expressed by equations (3.3-5) are of prime importance to establish the

stability and performance of the spacecraft containing a spinning flywheel whose

inertias are small compared to the spacecraft. Equation (3.3-5a) expresses the

rate at which the total angular-velocityvector and the flywheel-axis rotate about

the inertially-fixed momentum vector, H . This is shown in Figure 3.3-1(c). The

value of ¢ is a positive quantity because the total momentum.(/t _1 + liar) was
specified as positive in the _' direction. The expression for ¢, equation (3.3-5b),

represents the rate at which the spacecraft coordinate system rotates with respect

to the total velocity vector. Figure 3.3-1(c) also illustrates this rotation. The

sign of _ is negative. The discussion to this point is adequate proof of stability

because the relationship between ¢ and ¢ will cause the angle _ to decrease if

energy is lost from the spacecraft while conserving total momentum. (8) However,

the mechanism of the damping action is further analyzed because there are other

properties of interest.

3.3.3 Nutation-Damper Operation

A relationship was developed previously(3) which describes the magnitude

and phase of the momentum, H d , transferred to a ring of fluid when the ring is

rotated about its axis of symmetry. The relationship is as follows
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I d cc23

Hd =
(I + "rS)_

where Id = fluid mass moment of inertia

r: p
4p.

(3.3-6)

The optimum value of _"was suggested as 1/_ (3)because the best value for H d oc-

curred when it lagged the forcing angular-velocity by r:/8 radians or 22-1/2 degrees.
This condition produces the maximum component of damper-momentum 90 ° out of

phase with the forcing angular velocity, _23 • By placing the fluid ring on the body
(shown in Figures 3.3-1 and in 7.2-1), the angular momentum in the positive

direction may be expressed, with the aid of equations (3.3-6) and (3.3-1c) as

Hd3 =

Id _ sin 8 cos (¢t - 7/8)

_-_ _ (3.3-7)

Because the term Hd3 represents angular momentum attached to a rotating coordinate

system, a torque is produced between the fluid ring and the body. The standard gyro-
scopic torque equation is used to determine magnitude and direction. The instantane-

ous torque that the fluid ring produces on the spacecraft is given in the following
vector equation.

= z (3.3-8)

If equations (3.3-1) and (3.3-7) are substituted into (3.3-8), the results are an ex-
pression for two components of torque. The first component is along the _ axis
and is

_[ d _ 2 sin 20 sin Ct cos C(_t - 77/8)

T1 = ._.._ (3.3-9)

The second component is along the _ axis and is

Id _b sin 2 _ ov1

T 2 = _ (3.3-10)
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These torque components must be average over one complete rotation of the body

axis with respect to the velocity vector. The direction chosen is most important

in establishing stability. Equation (3.3-5b) demonstrated that ¢ was a negative

quantity. Therefore, to be consistent, the torque must be averaged from 2_ to 0,

or

0

_ id _2 sin2 _ 1 f
"_ = -- sinCt cos(¢t - S)d¢ (3.3-11)

T l 4_-_ 2 w 2_

The average value of T 2 is equal to zero.

Equation (3.3-11) leads to an expression for the torque produced by the damper on

the spacecraft in the positive I direction and has the magnitude given as follows

,,, i d _ 2 sin 2 _ sin w/8

T 1 : (3.3-12)

Equation (3.3-12) leads to the conclusion that the system is stable. It states that

for the spacecraft which has motion defined by equations (3.3-5a) and (3.3-5b),

where _ > 0 , and _ < 0, the direction of the torque produced by the damper is in

the positive _. Total system momentum must be preserved; therefore, the angle
8 must decrease as momentum is added in the positive T,direction. This is illus-

trated in Figure 3.3-1(d).

3.3.3.1 Nutation-Damping Time Constant

Figure 3.3-1(d) may be utilized to directly compute the time for the decay

of the nutation angle, 0. From the figure, equation (3.3-12) may be written as

lfo_/ + I 1 w I = H cos _ (3.3-13)

The total derivative is taken and gives

lfd_f + 1 ldw 1 = -H sin _ cos _ d (3.3-14)

The left-hand side of equation (3.3-14) represents the change-in-momentum along

the positive î axis required to produce a decrease in the angle 0 (because equation

(3.3-12) expresses the average torque in the _ direction). It is possible to equate

the additional angular momentum contributed by the damper action to the left-hand

side of equation (3.3-14). Thus,

T 1 d t : - H sin _ cos _ d 0 (3.3-15)
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Equation(3.3-15) maybe integratedto obtainthe expressionfor _ as a functionof
time. Smallangleapproximationis usedandassumescos _ ,_ i and sin _ _, 8.

The results are as follows

= _ e-t/_'d
o

where

"rd = - (3.3-16)
sin 77/8 Id

and

sin 77/8 O. 16

This compares closely with the more precise value of 1/0.189 previously given (1).

The difference between the two factors resulted from using the approximate value

for developed damper angular momentum (i. e., equation (3.3-6)) rather than the
exact relationship(3).

3.3.3.2 Design of Nutation Damper

A parametric study was developed(1) which showed how to obtain the mini-

mum weight of the flywheel and the damper required to produce a specified time

constant. This approach was used at the start of the design study; however, the

present recommendation does not utilize this optimum because the weight of the

damper has been reduced without changing the weight of the momentum system.

This approach is recommended because experience has indicated that a reduction

in momentum would make the spacecraft more sensitive to external disturbances.

Until a safe minimum is established, the present value of 140 in.-lb.-sec, pro-

duced by a flywheel with a moment of inertia of 9 in.-lb.-see. 2 and rotating at 150

rpm is recommended. The present recommended value is about 70% of the mo-

mentum on TIROS. The damper performance is based on the following presently-
assumed values

H = 140in.-lb.-sec.

13 = 90,720 lb.-in. 2

12 = 123,487

123 =I_2I _ = 106,000
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r H 140 x 386
- - 0.51 rad./sec.m

123 106,000

Id = 1890 lb.-in. 2

%
1 106,000

0.189 1890x 0.51
- 582 seconds = 9.7 minutes

The fluid will be selected to have a kinematic viscosity given by

r2o _ (0.45) 2
v = = ----- × 0.51 =

4 4
2.58 × 10 -2inches2/sec.

Although the combination damper and flywheel are not optimum, the damping time

of 9.7 minutes is certainly a satisfactory value. This is accomplished with 3.5 lbs.

of damping fluid.

The kinematic viscosity of 2.58 x 102 in. 2/sec. corresponds to a light motor oil and

is easily obtained by mixing available silicone oils.
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SENSOR SUBSYSTEM

General

The attitude-sensing subsystem must perform the following functions:

• Provide attitude-measurement and spin-rate data for use at the

ground station in the computation of roll/yaw attitude error and

momentum variation;

• Provide real-time horizon-crossing data as an input to the pitch-

axis-stabilization control subsystem.

The general sensing concept is identical to one that is now being utilized for the

planned TIROS 'T' and TOS programs. The sensors will be similar to those

used on the TIROS, Relay, and other RCA programs.

The basic sensor complex for the sensor subsystem consists of 3 passive, IR

earth-horizon sensors and the associated electronics. The field of view of all

3 sensors is fixed in a spatial orientation as indicated in Figure 3.4-1(a). The

two skew sensors form a 'WEE" configuration. Horizon crossing data from these

sensors are transmitted to the ground and utilized, with additional ephemeris data

to compute the required error commands for the roll/yaw axis and momentum

axis magnetic control systems. The sensor perpendicular to the spin axis provides

inputs to the pitch-axis control systems.

The general operation of the horizon-sensing subsystem is illustrated in Figure

3.4-1(b) for the 'WEE" sensors. As the sensors rotate about the flywheel spin-

axis, the beams from the two skewed infra-red (IR) sensors trace out two conical

sections in space and the intersections of the sensor paths with the earth are shown

in the illustration. Because of the difference in temperature between outer space

and earth, the signal level from each sensor changes as its beam crosses the

horizon. When the horizon-to-horizon pulses from the two sensors are of equal

duration, the spin-axis is parallel to the surface of the earth. If a yaw error

(rotation about the local vertical) exists at this time, the effect will be evidenced

as a roll error of the same magnitude but 90 ° later in the orbit because of the

inertial rigidity of the momentum-axis. If a roll error exists (as shown in the

illustration), it is detectable as an inequality in the horizon-to-horizon pulse
duration from the two sensors. It will be shown that the spacecraft roll and

yaw errors vary sinusoidally with the orbit anomaly angle; the spatial orientation

of the sensor spin-axis can then be determined from horizon-sensor data, or roll-

angle data, derived over some discrete part of the orbit. The amount of data re-

quired depends on the resolution and accuracy of each data point (generally, 30

to 40 degrees of anomaly angle is adequate).

During the initial orientation of the vehicle, only one sensor of the 'WEE" pair

will intercept the earth. The data from this sensor are sufficient for the de-

termination of roll-angle and, consequently, vehicle spatial-orientation. In
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this case, the absolute time-duration of the horizon-to-horizon pulse must be

used. (It will be shown that this pulse-width duration is proportional to roll

angle. ) However, the accuracy of the attitude determination is degraded if only

one sensor is used.

The discontinuities of the radial sensor are used as inputs to the pitch-axis-

stabilization control subsystem. It will be shown that the output of the perpen-

dicular sensor is considerably less sensitive to vehicle attitude variations (both

roll-angle and precession effects) than the skewed sensors. This makes the output

from the perpendicular sensor more satisfactory as a pitch-axis subsystem input

because it is desirable to minimize variations in the attitude-control system

operation. These variations are, however, the important parameters in the atti-

tude-determination mode; therefore, an attempt is made to maximize their effect

on the output of the skewed sensors.

In the present attitude-control system, only the sky-to-earth discontinuity of the

vertical sensor is used as an input to the pitch-axis stabilization control subsystem.

Knowledge of the local vertical is obtained through the geometric offset of the sensor

and is based on nominal orbital parameters. This technique leads to the minimum

uncertainty error because the utilization of the sky-to-earth discontinuity produces

a negligible error due to clouds (this is discussed in Section 3.4.3.3.5).

The physical operation of the sensor is as follows. The incoming radiation from

the earth and/or sky is focused on a thermistor detector by a germanium-lens

system. The thermistor detector consists of two resistive elements in a bridge

circuit. Only one element is exposed to the incoming radiation and this element

rises in temperature with incoming radiation. The temperature rise changes the

resistance of the elements and results in a voltage change at the junction of the

bridge when a bias current flows through both elements. The voltage at this junction

is composed of: a d-c component due to the mismatch in the resistance of the

elements; and an a-c component due to the changes in radiation from the earth/sky

transition. The resistance of each element is approximately 1.40 105 ohms (at

25°C); the change in resistance of the element which produces a signal just equal

to system noise is less than 0.15 ohms. The match between elements cannot be

held to better than 1% of the total resistance. Thus, the d-c signal can be 104

times greater than the a-c component of interest. Furthermore, the match between

the two elements shifts with ambient temperature as the resistance of both elements

change. Thus, it is mandatory that the d-c component be removed by capacitively

coupling the thermistor bridge to the amplifier. This is equivalent to a differentia-

tion of the amplifier input signal. Being a thermal device, the detector has a time

constant which is slow compared to that of a photo-conductive device; therefore, it

must be included for transient analysis. Furthermore, the analysis must include

a consideration of a high-frequency roll-off in the amplifier in order to limit the
noise bandwidth of the device.
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3.4.2 Mathematical Description of Sensor Sub_ystem

3.4.2.1 Sensor Model

Based on the previous discussion, a sensor model of the following form

is determined. (3)

E 0 K F r "rD S

N - ('r D S + I)('r B S + 1)('r A 5 + 1) (3.4-1)

where

E o = voltage output of the amplifier (volts)

N = the input radiance (watts/cm 2 ster. )

7o = differentiation time constant (seconds)

zB = thermistor time constant (seconds)

_A = amplifier time constant (seconds)

S = complex Laplacean operator

F r = the fraction of the detector area which is actually subjected
to irradiation

K = the optical-bolometer-amplifier combined gain constant in

volts/watt/cm 2 steradian given by

r = optical transmission ratio (a function of input spectral content)

a = detector area (cm 2)

[no = optical f-number

K D -- detector oonstant (ohm cm/watt sec)

K A -: amplifier gain (volts/volt)

K s -- bolometer bridge constant (proportional to bias voltage)

(volts/ohm)

3.4.2.2 Horizon-Crossing Model

To develop a complete model of the subsystem it is necessary to obtain a

description of the infrared earth source and a description of the complex dynamical
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interaction betweenthe sourceandthe sensor. It is beyondthe scopeof this study
to investigate, in detail, the infrared radiation characteristics and secondorder
geometric characteristics of the earth. This is anarea aboutwhicha great deal
hasbeenwritten andaboutwhicha great dealmore must be learned. A full descrip-
tion requires a probabilistic model that takes into accountsuchfactors as spectral
variability, planetary-surfaceirregularities, planetary regular nonsphericity, at-
mospheric refraction, surfacetemperaturevariability, andatmospheric-temperature
variability includingclouddistributions.

For this study, the discontinuitybetweensky andearth wasconsideredas a step-
changein black-bodytemperature (or radiance)andthe temperaturevariability
takenover a rangeof valuesfrom 200°Kto 300°K. Inputradiancechange,N(t), is
relatedto theseblack bodytemperaturesthroughthe Stefan-Boltzmanequation
leadingto the expressionfor N(t) of the form

o-
SB

N (t) = (T 4 - T4 ) u (t - to) = N u (t - to) (3.4-2 7
77

where

N

C_S B

Te

T
$

_S B

77

= Stefan-Boltzman constant (watt/cm 2 deg 4)

= earth temperature (degrees)

= sky temperature (degrees)

u(t-to)= unit step function

t o = horizon crossing time

This description can be considered a first-order approximation to the actual condi-

tions. More exact models are being studied at RCA and will be utilized in future

work. Using the step-change approximation, an expression for the dynamical cross-

ing of the discontinuity can be developed. It is assumed that the field of view of the

sensor is square (this is close to the actual case on present TIROS horizon sensors).

Making use of Figure 3.4-1(c), it has been shown(3) that

3

co 2 sin 2 a tan _ Z
F r (l) : 2 [2 (- l-')n (t - I n ) u (l - in) (3.4-3)

n=O
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where

t = 0
o

t 1 -_
o_ sin a tan

t 2 = t I + t 3

f
t 3

a_ sin a

oJ = spin rate of the flywheel

= grazing angle

a = angle between the flywheel spin-axis and the sensor field
of view

f = sensor field of view

For _ = 90 °, equation (3.4-3)becomes

O2 sin

f
n=O

(3.4-4)

where

t e _- 0
o

f

t 1 = t 2

3.4.2.3 Complete Dynamic Mode[

Utilizing I_placean transform techmques, equations (3.4-1), (3.4-2),

(3.4-3), and (3.4-4) can be combined to achieve a complete normalized dynamic
model of the sensor which has the form(3)
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These equations have been programmed on a digital computer for ease of utiliza-

tion in the parameter studies.

3.4.2.4 Definition of Attitude Angles

The satellite roll-angle, ¢, (as measured by the sensor) is the angle be-

tween the spin axis of the flywheel (vehicle pitch-axis) and a local horizontal plane

which is tangent to the earth at the subpoint of the spacecraft (the n, 7, plane). A

symmetric definition is adopted for the yaw angle, _ (i. e., the angle between the

spin axis and the n, 7, plane). In mathematical terms:

= (3.4-7a)¢ sin -1 S r

d; = sin-I St (3.4-7b)

Figures 2.1-1 and 2.1-3 of Section 2.1 of this rel_o_t can be used to convert these
angles to angles referenced to orbit coordinates _, b, n̂,, ; the angles become

The maximum roll-angle occurs when

Sb
= sin -1 (3.4-9)

(S_ + S_ )_

and is equal to

Cm.x = + (3.4-1o)

These equations make it possible to determine the complete orbital attitude history

(assuming no significant disturbance) from the knowledge of the roll-angle or yaw-

angle over a portion of the orbit (theoretically, only two points are required) and

the anomaly angles at which the data are taken.
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3.4.2.5 Attitude-Angle Determination

It has been shown(2) that the relationship between the earth-intercept

angle, 2fl, (see Figure 3.4-1) earth-time, te , and roll-angle, ¢, is given by

an ¢ (R )
2Z = 2cos- LT[- + in;co-;7 :

(3.4-11)

and the sensitivity is given by

d/_ - sec ¢ cos a (I + sin q_ cos L/cos a)
- (3.4-12)

de [sin 2 L - cos 2 a - sin ¢(sin ¢ + 2 cos L cos a )]½

where L = sin -1 (R/R + h)

These equations hold for any single sensor. Equation (3.4-11) is used for attitude

determination with large roll-angles of the spacecraft.

When 2 skewed-sensors with equal a -angles are used simultaneously for roll-

angles about zero, it has been shown that

where

¢ - 4 d fi 5% ; At e = (t) 1 - (%)2

J¢

( )1 and ( )2 are the first and second sensors respectively.

(3.4-13)

3.4.2.6 Grazing-Angle Determination

It has been shown(2) that the angle at which the sensor intercepts the

earth (the grazing angle _ ) is given by

_ 90 - c°s-I [ "R + h ]
= sin fl cos ¢ (3.4-14)

R

This angle is shown in Figure 3.4-1.

3.4-9



3.4.3 Discussion and Parametric Results

3.4.3.1 Geometrical Parameters

3.4.3.1.1 Zero Roll-Angle Conditions

For the zero roll-angle analysis, Figure 3.4-2 shows the parameters
dfl/dq_, _ , and /3 as a function of the a angle. For the vertical sensor (_ = 0),

the term rift�de is equal to zero and the angle _ is equal to 90 °. This result is
excellent because it is desirable to have the vertical sensor insensitive to roll-

angle variations thus producing no roll-coupling in the pitch-axis. Furthermore,

it is shown in this report that the value of 90 ° for the grazing angle, _ , produces
the best sensor output slope, another desirable result.

3.4.3.1.2 Non-Zero Roll-Angle Conditions

Figure 3.4-3 shows the angles _ and _ as a function of the roll-angle,
¢, for several values of the angle a. The sensor goes completely off the earth at
approximately 10° of roll-angle for the minimum value of the a-angle shown (a = 400).

The curves shown in Figure 3.4-3 are all for a single sensor. The other sensor in

the skewed-set will have identical curves related to its geometry; however, these will

be a mirror image of those shown but rotated about the zero roll-angle line. The

analysis indicates, therefore, that only one of the two skewed sensors is available
for attitude data above a value of ¢ equal to 10o.
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The system normally operates in a null-mode using both sensors; therefore, the

minimum range considered satisfactory to obtain information from both sensors

is ±10 °. (The actual usable range is less than +10 ° because of grazing-angle

dropoff as the sensor approaches the edge of the earth.) For these reasons, the

value of the a -angle will not be chosen as less than 40 °.

3.4.3.2 Accuracy Considerations

3.4.3.2.1 Nominal Pulse Outputs

Nominal sensor outputs were obtained using equations (3.4-5) and

(3.4-6) and these outputs are shown in Figure 3.4-4. These outputs were obtained

using the following values of parameters:

• _-A = 0.1x 10 -3

• _'R = 2.5 x 10 -3

• _'D = 1.0x 10 -3

• _ = 15.71

• f = 0. 0227

• _ = 0

• T = 260°K
e

3

o

N

2

Figure 3.4-4.
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(3.4-5) and (3.4-6)
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Figure 3.4-4 clearly illustrates the degradation of output pulse for low values of

grazing angle (_ angle).

3.4.3.2.2 Approximate-Error Equations

Figure 3.4-5 was utilized (3) to determine the worst-case radiance and

noise variations occurring between two sensors. The total time spread for these

variations is given by

PL + n 1
ML -_L + (3.4-15)

For a variation in earth temperature from 300°K to 200°K, the radiance variation

is 5-to-l, or PL/pu = 0.2 o If a nominal threshold-to-peak noise of 5-to-1 is chosen
then equation (3.4-14) becomes

AT
V

n

= 5.2
ML

(3.4-16)

LEGEND

ML:SLOPE OF LOWER CURVE'-_u'uM u

IPutUPPER PEAK VALUE

PL: LOWER PEAK VALUE VT > Vt

AT:TIME ERROR

Vn=NOISE VOLTAGE

(PEAK-TO-PEAK) I

VT:THRESHOLD VOLTAGE

Mu:SLOP[ OF UPPER

T CuRvE

/ I
/ ML I
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CURVES NOT

TO SCALE
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AT TIME

Figure 3.4-5. Error-Computation Curves Used to Determine Total

Time-Spread for Worst-Case Radiance and Noise Variatons
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Equation(3.4-16) is particularly valid for the attitudedeterminationat the ground
stationbecausethe spin-rate of the flywheel shouldbeconstantfor anyground
pass. For the caseof the pitch-axis sensor, the thresholdmust beset to mini-
mize the effectsof the flywheel spintolerances.

Measurementswith similar sensorsfor TIROSand Relayindicate that thepeak-value
to peak-to-peaknoisefor a 300°Kearth outputis 100to i (5.0 volts to 50millivolts).
This valuewill beusedin the followingdiscussion.

3.4.3.2.3 Worst-CaseError Analysis

Theworst-case pulseoutputsexpectedfrom the skewedsensor are shown
in Figure 3.4-6. For this case, the noisevalue is set at 1/100of the peaknoiseob-
tained at a spin rate (c_)equalto 225rpm, anearth temperature (T e) equal to 300°K,

and a threshold set at five times the noise value.

Analyzing the 75-rpm case first, a worst--case is obtained by subtracting the noise

from the low pulse value and adding it to the high pulse value. This yields a value

of _ T equal to 2.2 milliseconds. If the same operation is used for the 225-rpm

case, a value of A T equal to 0.75 milliseconds is obtained. It has been proven that

equation (3.4-14) produces results which are within 20% of these values.
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Figure 3.4-6. Worst-Case Output-Pulse Analysis for Dual (Vee)

Sensor Configuration
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It hasbeenfound,however, that the worst-case system error can be a factor of 2

above the values given in the previous paragraph, and occurs when the dual-sensor

method is used to determine the value of At e . This worst-case for the system
occurs when the first sensor experiences a "cold" earth temperature at the sky-to-

earth transition and a "hot" earth at the earth-to-sky transition, and the second sen-

sor experiences the reciprocal situation. For any single crossing, the error is

given as 1/2 /_ T. Using equation (3.4-13), and values of _ equal to 75-rpm, d_/d ¢

equal to 1.72, and _ r equal to 4.4 milliseconds, the worst-case error in the deter-

mination of the angle _ _ is 0.29 °. For the case where _ is equal to 225-rpm and
A 7" is equal to 1.5 milliseconds, the value of the worst-case angle ¢_ is 0.30 °.

The equivalent worst-case pulses for the pitch-axis sensor are shown in Figure

3.4-7, and include the +10% of nominal speed (150 rpm) conditions. There is no

experimental knowledge of the spin-speed to be used in setting the 90°-sensor

threshold; therefore, it is necessary to compare the 75-rpm/200°K case to the 225-

rpm/300°K case. For this condition, /_ r is equal to 1. 1 milliseconds when the

noise value is correctly added and subtracted. Then, if the trigger is set at an equi-

valent lead-time value of 0. 75 milliseconds, there will be a maximum error of

±0.55 milliseconds, or 0.75 ° at a speed of 225 rpm. For the +10% speed variation

case, the maximum error is +0.35 milliseconds or 0.35 ° at a speed of 165 rpm.

Therefore, the pitch-axis sensor error should be less than 0.5 ° in the operational

mode because the conditions of 225 and 75 rpm occur only during initial acquisition.

3.4.3.3 Parameter Optimi zation

3.4.3.3. 1 Considerations

There are four factors which affect system accuracy and over which

design control can be exercised. These factors are:

• System Noise;

• Pulse Rise-Time (slope);

• Threshold Value;

• Input Radiance Variation (PL/Pu).

The input radiance variation can be controlled by spectral filtering techniques and

is discussed in detail in Section 3.4.3.3.4 of this report.

The threshold value, based on good design practice, is set to be 5 times the value

of the peak-to-peak noise; the pulse rise-time and the threshold value are shown in

equation (3.1-14) as Vn/M L . This value of V/M L should be minimized providing
that the threshold-to-noise ratio is adequate. Effort has been expended, on another

RCA program, towards mathematically achieving this minimization. The problem

is one of choosing values of "7-0 and rA over the full variation of system parameters
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so as to minimize the value of _/M L and, consequently, _ T. It is necessary to

consider both the Johnson and current (l/f) noise as sensor inputs in order to per-

form the minimization. A solution to this problem has not yet been attained. The

optimization equations are very unwieldy and require the assistance of a considerable

digital-computer program for solution. Mathematical noise models have been de-

rived, but to date no measurements are available on the noise-frequency spectrum

of the sensor. Furthermore, the total noise-output measurements which are avail-

able are not sufficient for this optimization.

3.4.3.3.2 Choice of Electronic Time Constants

The continuation of a complete optimization study is beyond the scope of

this program. Consequently, the system bandpass characteristics were chosen based

on previous experience from the TIROS and Relay programs and a limited analysis.

The variation in peak-value and time-to-peak as a function of the parameter T 0 are

shown in Figure 3.4-8. To maximize the slope, it is desirable to maximize the peak-

value divided by the time-to-peak; this ratio is also plotted in Figure 3.4-8. No well-

defined maximum exists. Based on this fact, the value of _D was chosen as 1. 0 milli-

second or on the low-end of the ratio-curve peak. This was done to increase the elec-

tronics low-frequency break as far as possible to minimize the effect of "l/f" noise.
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Figure 3.4-8. Variation of the Peak Value and Time-to-Peak as a

Function of the Time Constant

The value of _A was chosen to achieve as narrow a bandwidth as possible without af-

fecting the system slope. A value of zA equal to 0. 1 millisecond satisfied this re-

quirement.

3.4.3.3.3 Choice of a-Angle

The time-to-peak and peak-value variations as a function of a -angle are

shown in Figure 3.4-9. It is desirable to maximize both the slope of the curve and

the value of d/3/d ¢. The slope is equivalent to the peak value dividied by the time-

to-peak; therefore, the product of this ratio with d fl/d ¢ should be maximized as a

function of a. This can be seen more clearly from equation (3.4-13) if 2 x 5 T from

equation (3.4-15) is substituted for the term 5 t as follows.

_-o
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Note that if the term d,_/d¢ × Mh is maximized, then the value of _ _ is minimized;
the product d #/d ¢ × MI. is also plotted in Figure 3.4-9 and peaks at a-- 35 °. How-

ever, this value of _ leaves only 5° of dynamic range on the sensor and is considered

inadequate for that reason. Consequently a value of _ equal to 40 ° was selected for

the sensor subsystem.

3.4.3.3.4 Spectral Region Considerations

Equation (3.4-14) indicates that an improvement in system accuracy
can be achieved if the radiance variation observed by the sensor is reduced. This

variation can be diminished by the utilization of proper spectral filtering. However,

this will usually also reduce the slope ML and must be compensated for elsewhere
to achieve a net system improvement. Thus, there is no advantage in increasing

amplifier gain because the noise voltage is then increased _roportionately with the(3)slope and no net improvement results. It has been shown that the sensor param-

eter,/no , is presently close to a physical minimum; for this condition, an increase
in the value M L can only be achieved by an increase in optical area while the ratio
of detector area to the square of the focal length and the term /no are both kept con-

stant. In addition, an increase is required in the sensor detector bias voltage.
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The attitude-sensor system presently used on TIROS has a spectral response of

2.0 - 20 microns with an anti-reflection coating peaked at 12 - 15 microns. For

the 2 - 20 micron spectral region, the variation in equivalent black body tempera-
ture that the sensor will see is from 200°K to 300°K (or a radiance change of 5 to

1}. Utilizing document NASA TN D-1850, "The Infrared Horizon of the Planet

Earth", dated September, 1963, the variations for other spectral regions can be

computed as can be the minimum radiance level. For a 12.5 - 18.5 micron sensor

and using present filtering techniques, it has been computed that the radiance level

variation is 2.3 to 1 and that the minimum radiance is equivalent to a black body

temperature of 182°K. The radiance at 182°K is O. 69 of the radiance at 200°K so

that, without any optical changes, the slope for 12.5 - 18.5 microns will also be

0.69 of the slope for 2 - 24 microns.

Utilizing these values, the worst-case errors for the sensor system were computed

previously(3) for various optical area. These values are compared to the equivalent

errors for the 2 - 20 micron sensor in Table 3.4-1.

TABLE 3.4-1. COMPARISON OF TYPE OF SENSOR AND SENSOR

ERRORS FOR ROLL/YAW AND PITCH

2 -20

12.5 -

12.5 -

12.5 -

Type of Sensor

micron (TIROS)

18.5 micron

(TIROS optics)

18.5 micron sensor

with 20% increase

in optics

18.5 micron sensor

with 37% increase

in optics

Roll/Yaw

Error

O. 30 °

0.36 °

0.30 °

Pitch Error

75-225 rpm

0.75 °

1.03 °

0.26 °

0.89 °

0.75 °

135-165 rpm

0.35 °

0.43 °

0.36 °

O. 31 °

3.4.3.3.5 Cloud Considerations and Horizon-Splitting Techniques

It was shown (3) that, for clouds at the sky-to-earth interface occurring

before the earth is intercepted, the error for the 2 - 20 micron sensor is 0.1 ° at a

spin-rate of 225 rpm with a cloud altitude of 10 nautical miles and a cloud tempera-
ture of 260 ° . This error is decreased for lower spin-rates, altitudes, and tempera-

tures. In the case of the 12.5 - 18.5 micron sensor, the error is approximately 0.03 °.

For the calculations presented in this report, these errors may be considered as 3

values.
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However, for cloudsoccurring at the earth-to-sky interface, errors of a much
larger magnitudeare possible. Noquantitative results havebeenobtainedduring
this studyprogram onthe error magnitudesbecausecompensationcanbe madefor
theseerrors during the groundstationdeterminationof attitude, andbecausethe
earth-to-sky pulse is not presentlyusedas an input to the pitch-axis-stabilization
control subsystem. Figures 3.4-10 and 3.4-11 illustrate the mechanismby which
the error is introduced. Figure 3.4-10 shows,qualitatively, the resultant pulse
outputsfor cloudsat the sky-to-earth intercept for a cloudradianceof 1/2 the
earth radiance; it also illustrates that there is negligible error introducedat the
expectedthreshold level.

Figure 3.4-11 illustrates the conditionsfor the earth-to-sky interface with the
sameconditionsas shownin Figure 3.4-10. However, in the caseof the earth-
to-sky interface, the error introducedcanbeextremely large if thresholdingmust
be utilized in the spacecraft (e.g., the pitch-axis sensor). This fact is the funda-
mental reasonwhygeometric offset, rather thanhorizon-splitting, is recommended
for determiningthe local vertical. ExperiencegainedonbothTIROSandRelayin-
dicate earth-to-sky transition errors of asmuchas five times the sky-to-earth tran-
sition errors whensimple thresholdingis used. The completepulseshapecanbe
evaluatedat the groundstation andcompensationcanbemadefor the cloudeffects.
Therefore, there shouldbe a maximumof a 50%increase in the roll/yaw error under
worst-case cloudconditions.

Thechoiceof whetherto usegeometricoffset, rather thanhorizon-splitting, does
involvemakingcertain tradeoffs. This occursbecausethere are several significant
advantagesto using horizon-splitting in spiteof the undesirableearth-to-sky inter-
face problem. The advantagesare asfollows:

• Removes the need for a pitch-axis sensor;

• Removes pitch-axis cyclic offsets due to orbit ellipticity;

• Removes the sun-viewing problem because the "Vee" type sensors

do not view the sun;

• May simplify the pitch-axis error sensor providing it is used in con-

junction with a sensor amplifier which passes the full earth-signal with

only a slight decrease in signal strength.

Additional study work must be done to determine the feasibility of a sensor amplifier

with the characteristics described because this function must be performed at spin

rates of 150-rpm. If the design of this amplifier is not feasible, then the complexity

of the additional horizon-splitting circuitry required negates the use of this technique.
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3.4.3.3.6 Sun Considerations

The orbital relationship which exists between the pitch-axis sensor and

the sun is such that the sensor will view the sun once per flywheel revolution; this

condition will, therefore, introduce a false pulse. To assure that this false pulse

will not enter the pitch-axis-stabilization control subsystem, the attitude sensors

will be used to gate the pitch-axis control input channel (these sensors do not view

the sun). This technique can be accomplished by rotating the "Vee" (attitude) sen-

sors around the flywheel axis. An analysis of Figure 3.4-2 indicates that this ro-

tation must be 19.60 nominally; a subsequent analysis of Figures 3.4-6 and 3.4-7

indicate that under worst-case conditions (Vee sensors view a "cold" earth and the

pitch-axis sensor views a "hot" earth), an additional 1.35 ° must be added to the

nominal rotation. The additional rotation will assure that the Vee sensors reach

the threshold level first. If the outputs of the Vee sensors are then put through an

"OR" circuit, for a l°-roll error the Vee sensors will lead the pitch-axis sensor

by an additional 1. 9 °. Therefore, with the Vee sensors offset by a total of 21 °,

the gate will open 3.3 ° before the pitch-axis sensor (in the worst-case) and this

latter value is the maximum error which can be produced by the sun. This maxi-

mum error will exist when the sun is at the edge of the gate and occurs at the time

in orbit when the sun is 3.3 ° from the sky-to-earth crossing of the sensor. The

method of implementing this technique is discussed in detail in Section 3.1 of this

report.
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3.5 COMMAND AND CONTROL SUBSYSTEM

3.5.1 General

The function of the spacecraft command and control subsystem is to receive,

store, decode, and execute the following functions initiated by the ground command
station.

• Program the operation of the attitude and momentum torque coils.

• Adjust the magnetic-bias coil current.

• Select and fire rockets.

• Select redundant sets of attitude sensors for both roll/yaw and pitch in-

formation sensing and select redundant pitch-axis control electronics.

• Actuate and terminate transmission of satellite attitude-sensor data.

• Turn on pitch-axis-stabilization flywheel position-control subsystem.

A block diagram of the Command and Control Subsystem, including the Telemetry

Subsystem, is shown in Figure 3.5-1.

Real-time command of the spacecraft control subsystems will be accomplished

through the Nimbus "C" clock subsystem. The programs for attitude and momen-

tum torquing are stored in a control programmer similar to that used on TIROS.

The command, "To", required to initiate a torquing program is stored in the

Nimbus "C" clock. The period of a torque cycle will be determined before launch

and "wired" into the programmer "period counter." This method of programming

the torquing cycles and period reduces the required amount of command-data trans-

mission to the satellite. Only one of the 16 command-storage locations in the
Nimbus "C" clock is used. If the Nimbus "C" clock was used to store a maximum

torquing program, the full storage capacity of the clock, 16 addresses, would be

utilized; thus, stored-command capability would be saturated during the first

orbit of torquing, thereby preventing any other satellite command from being

executed.

The magnetic-bias switch used to select high QOMAC torque-coil current and bias-

coil current is advanced, on a step-by-step basis, with real-time command from

the ground through the Nimbus "C" clock. The switch position information is

monitored by the telemetry subsystem of the spacecraft.

The rocket-switch position is selected in the same manner as the bias-switch.

Firing of the rocket is done with another real-time command from the Nimbus "C"

clock.

Sensing of the transmission of attitude-data from the spacecraft is controlled by

the attitude-data telemetry-control unit which receives ground commands directly
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from the Nimbus "C" clock. The attitude-data telemetry control routes attitude

data to the transmitter, switches redundant sets of sensors and pitch-axis elec-

tronics, and activates the attitude-data subcarrier oscillators.

The pitch-axis-stabilization position-control electronics are activated by a real-

time command transmitted through the "C" clock from the ground station.

3.5.2 Clock Comparability

The clock subsystem of the spacecraft will not be required to supply clock

pulses to shift the program data transmitted by the ground station into the attitude/

momentum control programmer. The program data are transmitted in the same

manner as the Nimbus-clock data and will be accompanied by a channel of sync

which will shift the program data into the attitude/momentum control programmer.

The clock pulses required, by the attitude/momentum control programmer, to

count the magnetic/torque periods can be derived by dividing the 1-pps output of

the Nimbus "C" clock. A 500-cps tone will be used to indicate parity check over

the beacon transmitter and is also available as an output from the Nimbus "C" clock.

3.5.3 Clock Interface

The 1-pps output of the Nimbus "C" clock is available for the clocking re-

quirements of the spacecraft. A 0.5-pps clock pulse can be derived by taking 1/2

of the present 1-pps output and applying it to the period counter of the attitude/

momentum control programmer to count out the 1/4-orbit period. Frequency di-

viding the 1-pps to 0.25 pps will provide the clock rate required to count a 1/2-

orbit period with the period counter.

3.5.4 Analysis of the Attitude-Control Programmer

The attitude-control programmer must store a QOMAC attitude program

and execute it at a later time. To do this, the programmer must perform the fol-

lowing operations sequentially.

(1) Receive and store serial program-data transmitted to the spacecraft

from the ground station.

(2) Decode the QOMAC command and energize the coil in the indicated

(+) or (-)direction.

(3) Count the period of the 1/4 orbit.

(4) Reverse the coil current after every period.
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(5) Tally the total cycles.

(6) Turn off the coil programmer when the total command cycles of

torque are completed.

3.5.5 Analysis of the Momentum-Control Programmer

Both the momentum-control and the attitude-control programs are stored

in the spacecraft for execution at a later point in the orbit. The programming of

the momentum-control coil can be accomplished in the same manner as used for

the QOMAC coil; however, the one exception is that the coil current is reversed

every 1/2 orbit, rather than every 1/4 orbit. Thus, the torque-period counted is

twice as long as the 1/4-orbit period.

The momentum-control programmer is required to perform the same sequence

of operations to the momentum-control coil as the attitude-control programmer

performs to the QOMAC coil, but on a 1/2-orbit basis.

3.5.6 Programmer Design

The same requirements exist for placing either an attitude-control program

into the QOMAC-torque coil or a momentum-control program into the momentum-

control coil; the only exception is the period between reversals of the current ap-

plied to the respective torque-coils. A control programmer which is designed to

operate either torque coil is only slightly more complex than a programmer capable

of operating only one of the coils. A diagrammatic representation of the sequence

of operation for both coils is shown in Figure 3.6-2. The programmer block dia-

gram is shown in Figure 3.6-3.

The attitude/momentum control programmer, in conjunction with the Nimbus

"C" clock, will execute a stored torquing program for either the QOMAC or the

momentum coil. To store either program, a command from the ground station

enters the Nimbus "C" clock; this command, called "To", signifies the time that the

execution of a torque program is to commence. The next ground station command is

also entered into the Nimbus "C" clock; this is a real-time command that is execu-

ted within seconds after it is accepted by the clock. Execution of this command

energizes and resets the attitude/momentum control programmer and opens the

data-interface gate to the clock receiver. With the interface gate open, the next

command transmitted to the spacecraft is for the attitude/momentum control pro-

grammer.

The program word contains 6 bits, 1 bit for even-parity, 2 bits for coil-code and

torque-sign, and 3 bits for the number of cycles of torque. A channel of sync is

transmitted with the data and shifts the data word into the programmer. The format
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of the data is such that the Nimbus "C" clock will not accept it as data meant for

clock action. The initial turn-on and reset of the programmer sets the programmer

register to 10,000. When the incoming data is shifted into the register the "1" is

shifted through it; the "1" spilling out of the parity position is detected by the pro-

gram sequencer. The sequencer then closes the interface gate and checks parity:

if parity checks correctly, a tone is applied to the beacon transmitter for detection

at the ground station; if the tone is not received by the ground station, the program

loading cycle is repeated.

The nominal period of a 1/4 orbit is determined before launch and the "2's"

compliment is "wired" into the orbit-period counter. To count the period of a i/4

orbit, the 1-pps output of the Nimbus "C" clock is divided to 0.5 pps and applied to

the period counter; this is accomplished by the program sequencer when the coding

in the register indicates the QOMAC-coil. The 1-pps output is divided tO 0.25-pps

to count the period counter through a I/2-orbit period when the momentum-program

code is in the programmer register.

An attitude, or momentum, torque program is initiated when the real-time

of the Nimbus "C" clock matches the time portion of the "To" command contained

in the storage portion of the clock. The "To" command is applied to the program

sequencer which, in turn, energizes the torque coil indicated by the coding in the pro-

grammer register; the coil-current flows in the direction also indicated by the regis-

ter coding. The proper count pulses (0.5-pps or 0.25-pps) are gated into the period

counter. When the period counter overflows, it is reset to the "wired" position,

the 1/4-1/2 orbit tally reverses the coil current through the sequencer, and the

count of the next period begins; the tally flip-flop multivibrator advances the torque-

cycle count every second period. The torque-cycles counter portion of the register
contains the "2's" compliment of the torque cycles to be completed; therefore, when

it overflows the program is complete. The sequencer then turns off the power to all

but the standby portion of the attitude/momentum control programmer. The pro-

g'rammer can also be turned off by an "Emergency Turn-Off' command sent through

the Nimbus "C" clock. A high-tvrque current control is provided from the magnetic-

bias switch and through the sequencer to the torque coils. The attitude-control

system will normally operate in the low-torque mode if this additional command is
not received.

The programmer uses 2-watts of power during operation, and 1/4-watt of power

in the standby mode.

3.5.7 Auxiliary I=unctions

3.5.7.1 Magnetic-Bias Stepping Switch

The magnetic-bias attitude control will be accomplished in a manner similar

to that used on the TIROS satellite. The magnitude of the current in the magnetic-bias
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coil will be adjusted by means of a multi-position stepping switch. The switch will
be used to select one of twenty-four resistors to be connected in series with the

coil circuit thus limiting the coil current. The stepping switch will also be used to

command the "high-torque" current for the QOMAC operation because magnetic-
bias is not required during this mode of operation. The stepping switch will have

a telemetry output which will indicate the position of the switch by the level of the
voltage appearing on the telemetry point. Figure 3.5-4 shows the switch control

schematic diagram of the magnetic-bias switch control.

MAGNETIC- BIAS
SWITCHING

._cE,vE.l,_ "c"
LV ---'I CLOCI :

J HIGH- _^

TOROUE_YT'TUOC-
CONTROL

J SEQUENCER

t_.
r _ _<j I .,,,,.._..,_. MAGNETIC-BIAS TELEMETRYm . i STEPPING--
/ NEGATIVE _ SWITCH ) _

m BiAS
J COIL

LGROUND l,

Figure 3.5-4. Schematic Diagram of the Magnetic-Bias

Stepping-Switch Control Circuit

The command capability of the existing Nimbus "C" clock subsystem will be used
to advance the position of the magnetic-bias stepping switch. The Nimbus clock

will be used on a real-time basis. Telemetry received from the spacecraft by the
ground station will be used to determine the position of the stepping switch; from
these telemetry data, the number of steps is determined and the switch must be

advanced either to apply the proper series resistor to the bias coil or to apply high-

torque for the QOMAC coil. A real-time command program is then compiled to be

sent to the clock subsystem. A real-time command word will consist of a portion
containing the device code (stepping switch) and the remainder containing the time
of command execution. The time portion will be real-time and cannot occur sooner

than three seconds from the spacecraft real time. This command will be repeated

once for each step advance of the stepping switch. Time must be provided to com-

plete the execution of the previous command and the time portion of the command
word will be updated for each step.

The Nimbus "C" clock will also be used for switching between positive and negative

power excitation to the bias stepping-switch so that either positive or negative
voltage can be used to excite the magnetic-bias coil.
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:3.5.7.2 Racket Switch

Several momentum adjustment rockets are built into the spacecraft struc-

ture. These rockets require a ground command to activate them and are activated

in a sequence selected by the ground station. The device used to select and acti-

vate the proper rocket is designated as the "rocket switch" and the design is very

similar to that of the magnetic-bias switch. The rocket to be fired is selected by

a stepping switch activated by ground command through the Nimbus "C' clock.

An additional ground command, again through the Nimbus "C" clock activates the

rocket related to the selected switch position. The position of the rocket switch is

determined by the ground station in the same manner as used for the magnetic-
bias switch.

3.5.7.3 Attitude-Data Telemetry

To compile an attitude/momen_m program, the ground station must re-

ceive from the satellite the data generated by the "Vee" horizon sensors, the

pitch-axis horizon sensor, and the satellite index pulse. Because these attitude

data are required only periodically by the ground station, they will be transmitted

in real time and only upon command.

The attitude-data telemetry-control subsystem performs several functions related

to satellite attitude data. This control unit receives, from the Nimbus "C" clock,

the following commands generated by the ground station:

• Transmit Attitude Data

• Stop Transmitting Attitude Data

• Switch "Vee" Horizon Sensors

• Switch Pitch-Axis Horizon Sensors

• Switch Pitch-Axis Electronics

The command to transmit attitude data causes the control subsystem to energize

the four attitude-data SCO's, remove the HRIR-data line from the transmitter in-

put, and apply the additional attitude-SCO outputs to the transmitter input with the

AVCS data.

The command to stop transmitting attitude data reverses the action of the command

to transmit. The SCO power is removed, and the HRIR-data input is switched

back to the transmitter input.

The command to switch "Vee" horizon sensors switches the input of the associated

SCO's from a primary set of sensors to a redundant (secondary) set in a commutating

fashion. The second command pulse will return the SCO input to the primary sensors.
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The command to switch pitch-axis horizon sensors switches the associated SCO

input between redundant pitch-axis horizon sensors in the same manner as the

"Vee" sensors are switched.

The command to switch pitch-axis electronics provides for switching power from

a primary set of pitch-axis electronics to a redundant (secondary} set. This
switching also commutates between the redundant electronics each time a switch
command is received.

The attitude-data telemetry control is, therefore, the subsystem that controls the

time-sharing of part of the "S"-band transmitter bandwidth. This sharing is be-
tween attitude data and HRIR data, either one of which is then added to the AVCS-

data input to the transmitter. The total subsystem power utilization during oper-

ation is 1.0 watt. No power is required in the standby (quiescent} mode.

3.5.7.4 Pitch-Axis-Stabilization Control Turn-On

When the spin axis of the spacecraft is almost normal to the orbital

plane, a real-time command is transmitted through the Nimbus "C" clock from

the ground station and turns on the flywheel of the pitch-axis-stabilization control

subsystem. This command operates in the same manner as the attitude-data

telemetry commands.
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3.6 TELEMETRY SUBSYSTEM

3.6.1 General

The telemetry requirements for the proposed attitude control system are

twofold. The first requirement is for the "on-command" transmission of attitude

data from the horizon sensors and the pitch-axis electronics; these data require

relatively wideband transmission. The second requirement is for normal "house-

keeping" data transmission for diagnostic purposes; these data can be transmitted

using the existing spacecraft housekeeping telemetry subsystem.

3.6.2 Attitude-Data Transmission Techniques

3.6.2.1 Requirements and Recommended System

The differentiated, amplified outputs of three bolometers and one magnetically-

generated index pulse will be transmitted to the ground to describe spacecraft attitude.

A 4-kc data bandwidth will be available for transmission of each pulse; this wide band-

width will preserve the leading edge of the pulse, the pulse rise-time being from 3 to
6 milliseconds.

A Frequency-Division-Multiplexed (FDM)/FM RF carrier is recommended to transmit

attitude-data to the ground station. Each of the four subcarriers in the FDM/FM base-

band can be either FM or AM. Both AM/FM and FM/FM are developed multiplexing

techniques for which hardware is commercially available.

Attitude data can be transmitted by an independent transmitter used only for attitude-

data transmission, or by one of the existing satellite transmitters on a time-shared

basis. Transmission of attitude data should occur only once every several orbits;

therefore, time-sharing a baseband spectrum with other data sources appears to pro-

vide both an economical and satisfactory solution. The recommended telemetry sub-

system is shown in block diagram form, in Figure 3.5-1 together with the Command

and Control Subsystem.

3.6.2.2 Use of Telemetry Transmitter

The possibility of frequency-multiplexing additional information onto the

telemetry transmitter's baseband was analyzed and found not feasible(2). The multi-

plexing approach was eliminated because telemetry-data subcarrier sidebands oc-

cupied the entire baseband spectrum.

3.6.2.3 Time-Sharing an Existing Transmitter

The present satellite AVCS/HRIR transmitter frequency-modulates a main

carrier with eight subcarriers. The baseband spectrum occupied by the HRIR data
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could be time-shared with 4 frequency-modulated subcarriers bearing 4-kc of data

at center frequencies of 50 kc, 80 kc, 110 kc and 140 kc. A discussion of such an
FM/FM baseband with a subcarrier modulation-index of 2 and a main-carrier

index of 2 for each of the subcarriers was presented (3). Operation at main-carrier

threshold (12 db) at an AVCS highest baseband frequency of 700 kc with an RF band-

width of 4.2 resulted in a final signal-to-noise ratio of 53 db for each of the four

attitude-data subcarriers. This output signal-to-noise ratio is more than adequate

for describing bolometer pulses with maximum 40 db signal-to-noise characteristics

and minimum 26 db characteristics.

3.6.2.4 Use of an Independent Attitude-Data Transmitter

An independent FM/FM transmitter operating with the same baseband cen-

ter frequencies, and main subcarrier modulation indexes just described, for the

time-shared case was also analyzed(3). However, the AVCS portion of the base-

band would be omitted with a resulting RF bandwidth of 888 kc. Operation at main

carrier threshold (12 db) resulted in an output signal-to-noise ratio of 46.3 db.

Here, as with the time-shared technique, thermal noise results in only a small

degradation of the input-bolometer-pulse signal-to-noise ratio.

Other modulation techniques have been considered for this approach. One possible

technique would be a Double-Sideband Suppressed-Carrier (DSB-SC) AM/FM. Four

subcarriers, each modulated with 4-kc of data could be centered at 9-kc, 19-kc,

29-kc, and 39-kc; this baseband could then frequency-modulate a main carrier.

The hardware implementation of DSB-SC-AM/FM on the satellite would be straight-

forward and the subcarrier modulators would be light, reliable, and inexpensive.

However, the disadvantage of DSB-SC-AM/FM lies in the detection process where

coherent detection is required. The frequency characteristics of the bolometer

horizon-pulses are such that coherent detection would be difficult to achieve each

time attitude data are desired.

The use of ordinary AM/FM is also possible, and the hardware implementation

would also be straightforward. However, in order to realize the same signal-to-

noise ratio improvement as in FM/FM, all the processing gain must be incorporated

into the main-carrier frequency modulator, thus demanding significantly higher

deviation from the AM/FM modulator than from the FM/FM modulator. Envelope

detection would be used with AM/FM. With the exception of the superior perform-

ance required by the AM/FM modulator, no major obstacles exist to prohibit the

use of AM/FM transmission of attitude data.

Time-multiplexing of the 4 attitude-data signals has been studied as a method of de-

creasing the required bandwidth if an independent transmitter is required. At present,

this method is considered undesirable because of the relatively rapid spacecraft motion

during initial alignment, and because of the wide range of flywheel speeds and the sub-

sequent wide variation in scanning periods.
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As notedpreviously, attitude-datatransmission to the groundshouldoccuronly
onceevery several orbits. This infrequentusedoesnot justify the additionalRF
bandwidth,weight, andcost that an independentattitude-datacommunicationslink
would require whencomparedto a time-shared link. However,if time sharing is
undesirablefor other reasons, the utilization of an independenttransmitter is per-
fectly feasible.

3.6.3 Housekeeping-Data Transmission Techniques

The proposed attitude-control system will generate telemetry voltages

compatible with the transmission capabilities of the present spacecraft house-

keeping telemetry subsystem. The parameters given in Table 3.6-1 will be avail-

able for diagnostic evaluation of any performance anomalies.

TABLE 3.6-1. SUMMARY OF TELEMETRY POINTS AND PARAMETERS

Number of Points Telemetered Parameter

15

1

1

1

1

1

4

2

10

Pulse-Width-Modulated error output

Frequency-to-DC Converter output

Power Amplifier Output Current (Motor Current)

DC-to-DC Converter

Rate Bias Voltage

Temperature Points

Magnetic-Bias Switch

Rocket Switch

Attitude-Data Telemetry Control Power

Pitch-Axis Electronics Command Switch

"High-Torque" Current Level

Torque Coil Currents:

1/4 orbit +

1/4 orbit -

Momentum +

Momentum -

Horizon Sensor Switches

Spare Points

3.6-3





3.7 LAUNCH MODE AND INITIAL ALIGNMENT

3.7. ! General

The spacecraft shown in Figure 7.2-1 will be injected into orbit by a

spinning last stage of a launch vehicle similar to the present Delta rockets used

to launch the TIROS and other satellites. The constraints on injection are listed

in Table 1.2-1. The 800-pound spacecraft referred to in the Work Statement(5)

and described in the proposal(6) would be governed by the constraints listed in

Table 1.2-1 under the Thor-Agena launch vehicle. The spinning injection mode

poses the most severe problem and is described in the following paragraph.

3.7.1.1 Launch-Vehicle Constraints

The important parameters affecting the injection and ultimate alignment

of the spacecraft are presented in Table 1.2-1, and are the spin rate of 125 2:10 rpm,

and the tip-off angle of + 8.0 °. Both values are reported to be 3_ values. With

these conditions existing at the instant of injection, it is necessary that the space-

craft somehow reduce its spin and change the axis of spin from about the spacecraft

yaw-axis to spin about the spacecraft pitch-axis. The order of these two events is

not theoretically important; however, for reasons previously discussed(7), a choice

is made to despin first and then correct the spin from about the yaw axis to about

the pitch axis.

3.7.1.2 Spin-Rate Requirements

The final momentum of the spacecraft under nominal conditions is established

(in Section 2.3.2) as 141 in-lb-sec. For the moment-of-inertia values used in this

study, this corresponds to a 5.74-rpm spin about the yaw axis, and a 4.0-rpm spin

about the pitch axis. The first requirement after injection will be to reduce the

initial spin from a 125-rpm nominal to approximately 5.74-rpm (or as close as is

practical).

3.7.2 Yo-Yo Despin Mechanism

During the study program, several methods for reducing the initial spin-
rate to a more useful value were studied. The results were discussed previously(7).

The mechanism selected for despin is the yo-yo which has been used extensively

on several satellite programs. A partial history of RCA experience with the yo-yo

despin mechanism was previously supplied(l); the despin history of TIROS's II to

VIII inclusive is given in Figure 3.7-1. The letters "E, F, G, and H" refer to what

the actual final spin tolerance would have been if the stretch in the cables had been

considered prior to assembly. The use of the history data accumulated on TIROS

is justified because the initial launch conditions are essentially the same as those
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of this study program, and includes the effect on tolerance of the initial tip-off

angle of+ 8.0 °. The major difference between the two applications of yo-yo despin
in the despin ratio is

TIROS

(x) .

0.096 nominal

500-1b

Spacecraft

69.
1

= 0.046 nominal

where the terms _/and _i are the final and initial spin rates respectively. The
final spin tolerance must include the following considerations:
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Aw i : + 10 rpm

: +8.0 °Tip-o[[angle

A _f
= +0.0046

OA.
t

The final tolerance results in a final spin ratio of 5.74 _+ 1.03 rpm, or an wf value

equal to 5.74 rpm + 18%; this tolerance is well within the capability of the control

system as is demonstrated in Section 3.3 of this report. The tolerance value of

18% corresponds to an initial momentum error of 18%, and in the study presented

in Section 3,1, the system was able to cope with momentum errors of 44% success-

fully.

The despin mechanism weight at 4.5 pounds is listed in Table 7.2-1; it was shown(7)

that solid-propellant rockets would be less weight, but because of previous RCA

experience, the yo-yo despin mechanism is recommended.

3.7.3 Spin-Axis Conversion

The second step for initial alignment is the change of the spin axis from

about the spacecraft yaw axis to about the spacecraft spin axis; this step in the

alignment sequence can also be considered as the transfer of all momentum in the

system from the spacecraft to the flywheel. Because the flywheel is initially at

right angles to the initial spin axis, a 90 ° turn must be accomplished by the space-

craft under a constant direction of the total angular-momentum of the spacecraft.

The following two ways can be used to accomplish the required transfer.

* Wait until the damper and the body energy-loss transfer spin from

the least moment-of-inertia axis (yaw) to the maximum moment-

of-inertia axis (pitch), and then activate the flywheel.

• Initiate the spin of the flywheel immediately after the yo-yo

operation.

These two approaches accomplish the same purpose in comparable time; however,

the first method is restricted to the requirement that the pitch-axis be the maximum

moment-of-inertia, and the second method does not include this requirement. This

situation was indirectly established in equation (3.3-5b) of Section 3.3 by showing

that the Euler spin-ratio (¢) is less than zero, and this is the requirement for stable

spin about an axis which is aligned with the angular-momentum axis.

The time-constant for nutation-decay for the small-angle case is developed in

Section 3.3 of this report; the decay calculations for the large-angle case were
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previously presented(3). (Thelatter caseapplies to the requirement for turning

the spacecraft through approximately 90 °. ) The time to turn the spacecraft

through 90 ° can be developed from using equation (3.3-5b) of Section 3.3 and

showing that, for the equivalent of the inertia values presented in Section 7.2, the

magnitude of the term ¢ increases by approximately 22% from the initial to the

final orientation. Almost all of this change takes place during the final 80 ° of the

turn. From Figure 3.3-1, the angle 8 is defined as the angle between the pitch

axis( 1 ) and the total angular-momentum vector. By considering the variation of

the angle ¢ with the angle 0, it is possible, with the aid of equation (3.3-6), to

make the average damping-torque presented in equation (3.3-12) a function of

the angle 8. This then becomes

l d_ sin 28sin [S(8)]

4%]_ + [7 _5(_)] 2 (3.7-1)

where

1 r 2 p ¢(0)
o

S(8) = -- tan -1
2 4tz

Equation (3.7-1) can be used in equation (3.3-15) to relate the momentum added

by the damping action to the total momentum in the system, and yields

id _2 sin2 8 sin [S(_)]dt

2 + 2

=- - H sin 8 cos 8 d9
(3.7-2)

The time to go from 81 to 82 can be determined from integration of equation (3.7-2)
as follows

0 2

= .rld---'_'2 vl cot 8 d_t81 _2 sin [S (0)] (3.7-3)

81

The integral can easily be evaluated by plotting the first term behind the integral

and then performing the integration graphically. However, the value of the first

term does not change radically as 0 goes from 90 to 0o; therefore, an average

value would serve the purpose of the computation. If the first term in hack of the
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radical is considered a constant over the range, then the time to go from _:_1 to _2

is expressed as

2 123

f sin 81t

(3.7-4)

where
average value sin [ _, (8) ]

So far, the system momentum term, [l, has been assumed to be a specified term;

however, it is shown in Section 3.7.2 that the term t! can vary by + 18% because of

the action of the despin yo-yo.. Although the value of the term /] will not change

with the angle (_, the value of ¢ will vary with l/; the variation will not be significant

provided that the flywheel is turned on immediately after the yo-yo despin operation.

This does not imply that there is anything critical about the turn-on time of the

motors; ff this time is delayed by 10 seconds or 10 minutes, it merely increases

(by approximately the same delay time) the total time required to make the change.

Table 3.7-1 shows the time to turn from _ approximately equal to 90 ° to _ approxi-

mately equal to 10°; the small-angle case time-constant of 9.7 minutes, as computed

in Section 3.3, can be used to determine the time required to go from 10 ° down to

0°. The times presented in the Table are for nominal momentum and + 50%, which

corresponds to an initial spin-down range from 2.87 rpm to 8.6 rpm. This range

exceeds the anticipated range by a factor of 3; however, it is still within the range

of the pitch-axis servo to lock the spacecraft to the horizon.

3.7.4 Completion of Alignment Process

It is shown in Section 3.7.3 of this report, that, within one-orbit time after

injection into the nominal orbit, the spacecraft will be ready for the application

of the QOMAC torquing subsystem (described in Section 3.2). In actual practice,

the process of turning the spacecraft momentum-axis through 90 ° could be started
without attitude measurement at the start of the second orbit. If the nominal, or

near-nominal, orbit are attained, then the start of the QOMAC cycle (as outlined in

Section 3.8) could be initiated on the basis of pre-launch command calculations.

At the rate of 3.5 ° rotation per one-half orbit, it will be possible to complete the

turn in about the first day in orbit. Attitude data can be measured during any time
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TABLE 3.7-1. SUMMARYOF TIMESREQUIREDTO TURNFROM
APPROXIMATELYEQUALTO90° TO

APPROXIMATELYEQUALTO 10o

Initial Spin-Rate K K _ _ t
(rpm) (90 °) (10 °) (sec.)

Nominal: 5.74

+50%: 8.60

-50%; 2.87

0.296

0.3000

O.284

0.320

0.332

0.305

0.308

0.316

O.297

0.510

0.750

0.250

1270

844

2700

t

90° i0 o

2 I23 sin 90 200

= Id _ ,L log e "_K sin I0 _ "K

I23 = 106,000 lb-in 2

Id = 1,890 lb-in 2

it is available, but it is probable that no change would be required in the program

until the start of the second day when the spin-axis should be within 10 ° of the

desired normal condition. At the lower torquing ratio of 1° per one-half orbit,

the spacecraft will probably be aligned within+ 0.5 ° by the end of orbit 20 following

launch.

The pitch-axis-stabilization control-loop will be commanded on after alignment, or

even several degrees before this alignment occurs. If the nominal initial spin-down

tolerances have been met, then lock-on will occur approximately 5-minutes after

the command is sent and will be aligned with the designated vertical within _+2 °.

It is at this time in the sequence that the decision will be made regarding the number

of momentum-control coil cycles required to adjust the total spacecraft momentum

to the alignment requirements of the system. The total alignment process for the

nominal conditions is shown in Figure 3.7-2 and includes the + 18% initial momentum

tolerance.

The requirements for use of rockets in the event of a failure mode were previously
discussed(7). These rockets are included in Figure 7.2-1 depicting the general

arrangement of equipment and weight has been provided for them; however, it is

not recommended that rockets be included in the design. If the rockets must be

included for some reason, the rockets shown in Figure 7.2-1 and the associated

command subsystem have the flexibility to perform the following functions.
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Despin after the spin-axis conversion to the nominal 4-rpm rotation

of the spacecraft about the pitch axis.

Trim the despin value to within the __50% recovery capability of

the pitch-axis control servo.

The first function would be required only if there is a complete failure of the yo-yo

despin mechanism. The second function could be used if the initial spin rate of
the launch vehicle was beyond the + 50% range, or if a partial failure of the yo-yo

despin mechanism occurred.
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3.8 DATA-PROCESSING SUBSYSTEM AND GROUND COMMANDS

3.8.1 Specifications and General Operation

In normal operation, attitude-sensor data should be acquired and checked

approximately once a day, and the orbit selected should have about 10-minutes of

contact time. The attitude-data (Index pulses, Vertical Horizon, Vee 1 and Vee 2

sensor-data) is received on four subcarrier frequencies requiring a receiver band-

width of 0.88 megacycles/second. The data will be recorded on tape with a trans-

port having a speed stability of 0.01% or better. A fifth track on the tape unit is

utilized for a reference-time frequency which is selectively variable. The block

diagram of the attitude-data acquisition subsystem is shown in Figure 3.8-1.

The attitude-data can be recorded and, simultaneously, an oscillograph of the data

could be obtained for examination and study. Sensor earth-times and flywheel spin-

period can be computed from time recording; the chart speed must be at least 16

inches/second for adequate resolution and a frequency-response of from 0 to 5 kc

will ensure reproduction of the attitude-sensor pulses. The width of the trace should

be between 0.05 and 0.01 millimeter. At a chart speed of 16 inches/second, ten

minutes of data would require 800 feet of chart paper. In the initial alignment state,

only a very short data-run is needed. Once the spacecraft is normally aligned, the

oscillograph would be a backup system.

I GROUND STATION

FM RECEIVER I

CARRIER

DEMODULATED_

OUTPUT ___ CHANNELt

VERTICAL HORIZON

SENSOR

50t 8KC

__ CHANNEL2
INDEX PULSE

8OZ 8KC

CHANNEL 3

VEEISENSOR

I10! 8KC

CHANNEL 4

VEE 2 SENSOR

140t SKC

l TIMING

MARKER

(VARIAgLY

SELECTABLE)

SUB CARRIER

DEMODULATED

OUTPUT

I1= 1UNIT= I
--j = -

I OSCILLOGRAPH ]

PRINTER

Figure 3.8-1. Block Diagram of the Attitude-Data Acquisition Subsystem
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In normal operation, the datawill beprocessedby a data-controller that controls
a counterwith a printer readout. A block diagramof a serial data-controller is
shownin Figure 3.8-2. Usuallythe sensorperiod (Vee1 andVee2 sensorearth-
times) are the datarequired; however, occasionallythe sensorperiod andthe time-
differencebetweenthe leadingedgesof the indexpulseandthevertical horizon
pulse (proportionalto the pitch-axis servo error) togetherwith the determination
of whichpulseoccurs first are necessary. To provide this information, two modes
of operationare providedby the datacontroller. Modeonecomputesthe earth-
times andthe flywheel spin-period; modetwo computesthe pitch-axis servoerror
andthe flywheel spin-period.

Themodeonecomputationcanbeaccomplishedin oneof two manners;either the
earth-times for eachsensorcanbecomputedon successivespins (serially), or
bothearth times canbe computedonthe samerun (parallel). Theserial process
requires less equipment. However, if the dataare to beprocessedserially, the
averagespeedstability betweentwo successivesensor-rotationsmust be less than
0.05%to becompatiblewith predictedsensoraccuracies. Thespacecraftis not
specifiedto havethis sensor speed-stability. An investigationof the flywheel
speed-controlshowedthat anaveragespeed-stabilityof 0.04%betweentwo suc-
cessive sensorrotations wouldprobablyresult; taking advantageof this speed-
stability wouldallow serial data-processinghardware. In three sensorrotations,
one'set of attitudedatacanbe computedandprinted out. If the nominalsensor

iNPUT SHAPERS A. CONTROL
CHANNELS GATES

J VERT HORZ /INDEX

RELATIVE TIME
PULSER

?

SAMPLING SEQUENCE
SELECTOR
CIRCUITS CONTROL

T
MODE J

SELECTOR

COUNTER

1
PRINTER CONTROL

GATES AND
REGISTER

PRINTER

Figure 3.8-2. Block Diagram of a Serial Data-Controller
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rotor-speed is 150 rpm, ten minutes of data would result in a length of 20.8 feet of

print paper. Sampling of the data is a feature of the data controller to reduce the

print sheet length. The data can also be processed any time that tape playback is

desired.

Serial processing of the data should be adequate for the present system. However,

the oscillograph output can be used to check this processing and, if the errors are

larger than expected, an additional unit (of almost identical design) can be added

to convert from serial to parallel data-computation. During conversion, the oscil-

lograph mode can be used to assure continuity of operation.

The transmitted sensor-data is displayed on an oscilloscope for operator viewing

simultaneously with the controller processing. If cloud noise is detected on the

earth-to--sky transition pulse, then the oscillograph is turned on and the proc-

essing operation is switched from the data-controller to computation utilizing the

oscillograph reading.

Earth time outputs from the data controller or the oscillograph computation are

utilized with pre-computed nomograms to develop roll-error data. The data are

plotted on pre-computed curves to develop the required QOMAC-programmer com-

mands and magnetic-bias commands. Spin-period data are also utilized with pre-

computed nomograms to develop momentum-control-programmer commands.

During initial alignment, the pitch-axis error data must be utilized to compute the

proper momentum-control program.

3.8.2 Equipment Requirements

3.8.2.1 Requirements for Additional Equipment

The counter should be capable of counting from 10 microseconds to 1 second

in steps of 10 microseconds with digital readout. The printer should be capable of

printing 200-lines per-minute and have a capacity of six columns. The decoding of

a four-line input to each column is required. The data-controller is a custom-built

item of standard logic components (e.g., gates, flip--flops, single shots, and Schmidt

triggers). The details of the logic design were previously presented(3).

3.8.2.2 Time-Sharing of Attitude-Data with HRIR-Data

Approximately once a day the attitude of the spacecraft will be checked;

therefore, the attitude-data could be time multiplexed with the HRIR data. During

the attitude-data acquisition time, the transmitter would be transmitting attitude-

data rather than HRIR data. The HRIR bandwidth spectrum available at the ground

station is sufficient for the attitude bandwidth requirement. Thus, the AVCS/HRIR

receiver can be utilized for the reception of attitude data. The carrier demodulated

output of the AVCS/HRIR receiver would go to the channel inputs shown in Fig-

ure 3.8-1.
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3.8.2.3 Use of Ground-Station Oscillograph

A Honeywell 1508 Visicorder with a 24-channel capacity is presently used

in the ground station; therefore, ample channel-capacity is available for recording
attitude data. The frequency response of the 1508 Visicorder is from 0 to 5000 kc

with the M8000 galvanometers and the paper speed is variable to a maximum of

60 inches/second. The 1508 Visicorder would, therefore, be suitable for the

attitude-data acqusition requirements specified in Section 4.0 of this report.

3.8.2.4 Use of Ground Station Tape-Recorder

The ground station tape-recorder is the M.H. Mincom Gl14 tape unit which

has a capacity of 14 channels. Five spare-channels are available for attitude data.

The Mincom 1400 has two frequency response modes, 10 kc or 20 kc, either of

which is more than ample for the attitude-data acquisition requirements. A servo-

speed stability of 0.01% is also installed in the tape transport. Therefore, this

tape unit meets the attitude-data requirements for speed stability and frequency
response.

3.8.2.5 Use of Present Command Structure

The Command and Control Subsystem (discussed in Section 3.5) was de-
signed to be compatible with the present ground station command structure. There-

fore no changes are required in this area.

3.8.2.6 Telemetry Data Processing

Inputs to the telemetry data-processing subsystem (e. g., motor voltage)

are processed in accordance with the present normal technique.

3.8.3 Attitude and Momentum Determination and Command Computation

3.8.3.1 Earth-Time Determination

The Vee sensor earth-times are necessary for the initial step in attitude

determination. Section 3.4.2.5 gives the relationships between the roll angle

and the half-intercept angle (/3) and, consequently, (through /3 -= _ste/2) to the

earth time, t e . The data-controller computes earth-time by using thresholding

circuits on file sky-to-earth and earth-to--sky transition pulses and counting tech-

niques. The operation is relatively straightforward but will produce large errors

for clouds on the earth-to-sky interface. In this case, and in the case of large-

roll-angles when only one sensor views the earth, manual computation of earth-

times (from oscillograph recordings} is recommended. There are detailed pro-

cedures presently available that have been developed on the TIROS 'T' program
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for utilization in determiningearth-times from a chart recording. Thesepro-
ceduresdevelopbest straight-line-slope-fits of the leadingedgeof the recorded
pulses;this establishescrossingtimes that are independentof pulse amplitude
andwhichcanalso be usedto discriminate againstmost of thepulse-disturbances
dueto cloudeffects. It is not feasible to presentthe details of theseprocedures
in this report. However, it shouldbenotedthat theresultant accuracy is theo-
retically 4 times that of a simple thresholdingtechniquewith cleanpulses (or 1/4
of 0.30o), andat least equalto the predictedaccuracywithoutcloudsof the thresh-
olding methodwhencloud degradationdoesexist (or 0.300).

3.8.3.2 Determination of Spin Period

The spin-period (T) is computed from the time between consecutive sky-

to-earth transition pulses. If nutation exists, the period will change slightly from

cycle-to-cycle and an average period must be computed. If the vertical sensor is

used (with sun blanking), the nutation effects are negligible over a wide range of

roll-angles. The spin period is presently measured on TIROS, using averaging

techniques, to better than O. 01%.

3.8.3.3 Determination of Pitch-Axis Error

Pitch-axis error is computed from the time between the reception of a

vertical-sensor sky-to-earth pulse and an index pulse. If the time is denoted as

t , then the pitch error is
P

t

AO P= -- × 360 (degrees) (3.8-1)
P T

3.8.3.4 Computation of Roll-Angle Error

Roll-angle error is computed from equation (3.4-11) in Section 3.4.2.5

for large roll-angles (one sensor viewing the earth) and from equation (3.4-13) for

small roll-angles. In operation, no computation will be required because nomo-

grams have been developed from these equations and their utilization is presently

planned for the TIROS "I" satellite. For large roll-angles, the scales on the

nomogram are 4, _ste_ , °_s re2 , andh, where only t 1or t 2 will be used (de-

pending on which sensor views the earth). For small angles using both sensors,

the h scale is not required because the nomogram can be computed from the exact

relationship

n E% sos ,s (3.8-2)
tan ¢ - 2 2 2

instead of the linearized equation (3.4- 13).

3.8-5



3.8.3.5 Computation of Cm ax and

The required values of Cm _x and \ may be obtained by making use of
equations (3.2-15), (3.4-8), and (3.4-9) and by plotting roll-angle data. Pre-

computed normalized curves will be available for operational plotting. Figure

3.8-3(a) is an example of the type of curves that will be available and is plotted

for maximum roll-angles of from 0.1 to 2.0 degrees. Superimposed on the curve

are a set of typical data points taken over one- tenth of an orbit. In actuality, if

serial data-processing is used, then 500 points (1/3 of 150 x 10) can occur during

a 10-minute period. Figure 3.8.3(a) is plotted assuming the curves start at the

ascending--node and that the data begin at ' -- 36". The _. angle (_,_ = oJ occurs

at :_ : 0 for the given plots. If the data start at some other point, then the _ angle

has a different value. For example, if the data start at _ = 72 ° but the curve shape

is the same, then the ¢_,, value will occur 36 ° later than shown and _ will be
equal to 36 °. This condition is illustrated in the sketch shown in Figure 3.8-3(b).

With the number of points available, and the predetermined knowledge of the shape

(sinusoidal) and period (orbital period) of the plot, 4_ ax and _ can be computed to

a high degree of accuracy because the random errors in measuring roll-angle are

considerably smoothed. An even greater accuracy is attainable using "least-square

optimization techniques" on a digital computer. This approach has been investigated

on another program and the derived equations are available if required; however,

based on the present accuracy specification, the computer computation should not

be necessary.

3.8.3.6 Computation of QOMAC Commands

The QOMAC start-angle is equivalent to one-half the ,\ angle. For ellip-
tical orbits, a correction can be made as discussed in Section 3.2.2.4.3. The num-

ber of cycles of torquing required for the low-torque mode is obtained from

_QX

n - o (3.8-3)
1 /cycle

and, for the high-torque mode, from

(_rtl ax

n - (3. 8-4)
3.5°�cycle

where rz is always taken as the nearest lower-integer.
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The direction of current at the start of a cycle is determined by the phasing of the

_m,x curve.

3.8.3.7 Computation of Momentum-Control Commands

For small pitch-axis errors, the momentum-control switching angles occur

over the earth's poles as discussed in Section 3.2.4. Large pitch-axis errors can

occur when the pitch-axis-stabilization control subsystem has locked on (during

initial alignment) with a large momentum-deviation in the spacecraft. In this latter

case, Figure 3.2-7 of Section 3.2-4 can be used to determine the proper start angles.

The number of cycles of momentum-control torquing required is computed from the

known percentage-change per-cycle of 2%. Generally, the torquing will be com-

manded at a time when the momentum is 5% below nominal and will be executed for

5 cycles until the momentum is 5% above nominal. During initial alignment when

momentum errors of +50% can occur, many more cycles may be required. The

direction (+ or -) of the starting current depends on whether the momentum must

be increased or decreased and over which pole the cycle is started.

3.8.3.8 Magnetic-Bias Command

The magnetic-bias coil is not excited until a momentum-axis drift history
is established. Under the worst-case predicted conditions, the spacecraft can be

drifting at 4.0 ° per day. With a resolution of 0.07O/day per-step, the magnetic-

bias switch should be pulsed for ",_" steps where

Spacecraft observed drift rate
" = (3.8-5)

O.07 degrees/du)_

In equation (3.8-5), m is chosen as the nearest integer.

The drift history of the spacecraft can be most easily observed on polar plots of

_;,,,,,, vs ;'_because these plots will show both the magnitude and the direction of

the momentum-axis drift. Generally, only drift about the h axis will be corrected

utilizing the magnetic-bias coil. An iteration process will probably be required

to obtain the optimum switch position; furthermore, occasional changes will
probably be required to correct for drift due to resolution errors.

3.8.3.9 Rocket Commands

Rocket commands will only be required if there is either a complete despin

yo-yo failure, or if the final momentum value after yo-yo despin does not permit lock-

on of the pitch-axis-stabilization control subsystem. In either case, the flywheel
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spin-period data, in conjunction with the index pulse transmission, can be utilized

to determine the total spacecraft momentum and, consequently, the requirement

for rocket command.

3.8.3.10 Pitch-Axis Position Control Turn-On Command

This command will be initiated when attitude-data indicate that the mo-

mentum axis is within 10 ° of the orbit normal.
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Section 4.0

SYSTEM ACCURACY ANALYSIS

4.1 POINTING ACCURACY

4.1.1 Pitch-Axis

The pointing accuracy of the pitch-axis-stabilization control subsystem

was discussed previously(4), and is presented in Section 3.1 of this report. The

major sources of random error are the sensor input (+ 0.50 3o), and the PWM

error-detector resolution (+ 0.05 ° max.). The major sources of uncompensated

known errors are the steady-state momentum deviations (+ 5%, or + 0.6 ° maxi-

mum error for a K v = 2) and ellipticity (+ 1.3 ° for a 0.013 ellipticity). In addition,

the disturbance analysis shows a possible additional cyclic momentum deviation of

+0.67%(by r.s. s of the roll and yaw residual-dipole contributions)which is equiva-

lent to a once-per-orbit variation of +0.08 ° (where r.s.s is the root sum squared).

The pitch-axis-stabilization control subsystem will normally filter the sensor in-

put errors over many samples because the subsystem bandwidth is only 0.11

radians/sec. For a worst-case condition, it was assumed that the + 0.5 ° sensor

error exists in one direction longer than the filtering time of the control subsystem.

The derivation of the worst-case error due to the sensor viewing the sun was pre-

sented in Section 3.4.3.3.6 of this report.

4.1.2 Roll and Yaw Axes

Pointing accuracy for these axes is affected primarily by the errors in

measuring roll-angle during the ground-station computation, and by the resolution

in the QOMAC-torquing cycle. The errors in measuring roll angle are discussed

in Sections 3.4 and 3.8 of this report. By using either the data-controller clean

data or an oscillograph computation for the cloud-corrupted data, a basic single

roll-angle measurement can be made to an accuracy of within + 0.3 °. The com-

putation of the terms Cm_x and _ utilizes many roll-angle measurements and should

produce data which is at least accurate to the value of a single data point; proper

data-processing can improve this accuracy to an appreciable value.

The QOMAC subsystem has a torquing cycle that produces 1° of motion. Section

3.2.2 of this report indicates that the maximum anticipated error in the torque
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magnitude will be no more than + 10%, leading to a random error of ± 0.1 o. For

example, ff the roll/yaw error is allowed to build up to a value of ± 0.5 ° before
torquing, it can be brought to -0.6 ° after torquing because of the QOMAC sub-

system effect.

It is shown in Section 2.3.4 of this report that residual dipoles along the roll and
yaw axes produce the only significant force-nutation motion. Combining the effects

of both dipoles leads to a half-cone angle of 0. 038 ° with a rotation-rate of 1-
revolution per-orbit.

Nutational motion will exist during the QOMAC or Momentum-Control torquing
cycle as discussed in Section 3.2 of this report. However, the duty cycle for

these torquing modes is extremely small, and the magnitude of motion is always
less than 0.5 ° peak-value. Therefore, this motion is not included in the summary.
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4.2 JITTER ACCURACY

4.2.1 Pitch-Axis

A worst-case jitter, caused by the sensor inputs, can be obtained by as-

suming that the sensor output error during any three flywheel revolutions goes

from +0.5 ° to -0.5 ° to +0.5 °. For the slowest sampling period (0.6 sec.), the

error-input to the pitch-axis servo is

sin 27T (4.2-1)A_ = 0.5 - 0.5 sin 5.2 t
pin 1.2 t

At 5.2 radians, the servo subsystem attenuates the input signal by a factor of 1800;

therefore, the output is given by

/_ = 0.0003 sin 5.2 t
p out

(4.2-2)

Differentiation of equation (4.2-2) leads to a maximum jitter-magnitude of 0.0003

x 5.2 = 0.0016°/sec.

Jitter due to a ± 0.05 ° resolution is computed in a manner similar to the computa-

tion for the sensor; however, the jitter is assumed to occur about the subsystem

natural-frequency (0.11 rad./sec.). This analysis leads to a jitter rate of

0.05 × 0.11 = O.O055°/sec.

Motor-torque variations, frequency-to-d-c converter ripple, and sampling-ripple

produce jitter rates at least one order of magnitude below those due to resolution,

and are considered negligible.

Jitter due to sun interference can occur when the sensor views the sun; this occurs

when the spacecraft comes out of occultation at the horizon. A relatively-smooth

transfer will occur initially and the sensor will then track the sun for the maximum

gate period of 3.3 ° . At the completion of this period, the sensor will lock onto the
earth. From Section 3.1 of this report, the pitch-axis-stabilization control sub-

system will require approximately 10-seconds to perform this lock-on maneuver,

or a rate of 0.33°/sec.

4.2.2 Roll and Yaw Axes

The operation and performance of the nutation damper were discussed in

detail in Section 3.3 of this report. As indicated there, long-term induced jitter

will be negligible because of the damping action. In Section 2.3.4, it is shown

that the only significant disturbances, in terms of jitter, are caused by meteoric

impulses or uncompensated momentum. Other disturbances occur at orbital rate

and will produce negligible jitter.
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4.3 SUMMARY

A summary of all the disturbances discussed in this section of the report
are presented in Table 4.3-1.

TABLE 4.3-1. SUMMARY OF POINTING ACCURACY AND JITTER

AXIS

SOURCE

OF

ERROR

Pitch I. Sensor

RANDOM

ANGULAR

ERROR

"_ 0.5 ° 3_

2. Resolution ± 0.05 ° 3c_

Known

Momentum

Deviation

Unknown

Momentum

Deviation

3.

4.

5. Ellipticlty

Roll/

Yaw

6. Sensor:

Viewing

Sun

7. Residual

Dipoles

Total

1. Sensor

2. QOMAC

R esolut ion

Roll/ 3. Meteorites

Yaw and Uncom-

(Cont. ) pen sated

Momentum

4. QOMAC

Error

± O. 06° for

0.5% tmcer-

tatnty

± O. 08 ° max.

cyclic per

orbit

+ 0.52 3c_

(r.s.s.)

± 0.3o 3c_

_=0.I0 ° max.

UNCOMPENSATED

KNOWN A NGU LAR

ERRORS

JITTER

RATES

0.0016°/sec.max.

O. 0055°/sec. max.

±0.6 ° for a Negligible

± 5% momentum

deviation

maximum value

Negligible

±1.3o 3 c_

3.3 ° maximum

for O. 95

m_utes/orbit

± O. 6° max.

± 1.3 ° 3a

± 0.5 °

Negligible

(0rbR rate)

0.33°/sec. for

I0 seconds

Negligible

(orbit rate)

O.006°/sec. 3 c_

(r.s.s.)

< O. O05°/sec.max.

5. Residual ± 0.038 ° max.

Dipoles

Total :t0.5 ° < 0.005°/sec. max.±0.32° 3_

(r. s. s.)
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SYSTEM RELIABILITY

Section 5.0

AND FAILURE-MODE ANALYSIS

5.1 GENERAL

This section presents the results of a detailed reliability and failure-mode anal-

ysis performed on the gyromagnetic-stabilized (FSMTMS) attitude-control system.

The Failure-Mode and Effect Analysis of the system, at the level performed,

revealed no simultaneous occurrence of a relatively high failure probability and

a critical or major-performance area. This result is based on the incorporation

of the recommended redundancy and modifications brought about, in part, by this

analysis and its advantage as being conceptual in nature.

The reliability analysis is based on the fact that an extensive worst-case analysis

together with a failure-mode and effects analysis and testing and preconditioning

will have eliminated all but random-failure probabilities. Reliability, as referred

to in this report, is best described as the probability of the equipment performing

its desired function throughout the intended mission period.

As a result of this analysis, the inherent reliability of the FSMTMS system for a

minimum life of one year is 0. 923, using redundancy for critical elements. The

final design should not change the reliability results significantly.
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5.2 FAILURE-MODE AND EFFECTS ANALYSIS

The failure-mode and effects analysis consists of an analytical procedure for

critically examining the possible mode of system failure, the probabilities of

occurrence of these failures, and the resultant effect upon the system design goal.

One of the objectives of the analysis is the highlighting of any high-failure probability

that occurs in conjunction with critical performance.

Potential failures representing serious deterrents to reliable performance of the

system are discovered, and compensating provisions such as redundant circuits and/

or components, changes in modes of operation, or other means of operating in the

presence of failures or degradation, are incorporated.

A detailed examination of all potential failure modes and effects was presented(3).

The analysis described showed that the combination of high failure probability and

critical performance occurs relatively infrequently, and that all occurrences of

this type can be corrected by suitable redundancy. The recommended redundancy
is discussed in the next section.
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5.3 RELIABILITY ANALYSIS

5.3.1 System Description

For purposes of the reliability analysis, the FSMTMS control system may

be considered as consisting of two major subsystems plus the mechanical components.

The two subsystems are (1) ,,Pitch-Axis-Stabilization Control Electronics", and

(2) "Attitude and Momentum Control" subsystem.

The primary components in the Pitch-Axis-Stabilization Control Electronics are

• Horizon Scanners

• Pulse-Width-Modulator (PWM)

• Compensation Amplifier

• Power and Summing Amplifier

• Frequency-to-d-c Converter

• Digital Tachometer (Encoder)

• Motor

• D-C to D-C Converter

The primary components in the Attitude and Momentum Control subsystem are

• QOMAC and Momentum-Control Programmer

• Magnetic-Bias Stepping Switch

• Rocket-Actuating Stepping Switch

• Telemetry Subsystem

• Momentum (spin-axis) Coil

• Magnetic-Bias Coil

• QOMAC Coil

• Rockets

• Despin Yo-Yo _s

5.3.2 Operating Time

The reliability analysis is based on a minimum mission time of one year.

During this time the Pitch-Axis-Stabilization Control Electronics will operate on

a 100% duty cycle, (i. e., tpc = 8760 hours). The QOMAC and momentum-control

programmer is conservatively estimated to operate six times per week for the
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duration of one orbit each operation. The planned orbital period is 103 minutes.

The resultant nominal operation time is 535 hours (i.e., t e = 535 hours). The

data processing and telemetry subsystems will be operated nominally once every

seven orbits for 15 minutes maximum, totaling 180 hours per year (i. e., tdr =

180 hours). The magnetic-bias stepping switch electronics will operate one year

(i. e., tm b = 8760 hours).

There are five relays in the attitude and momentum control subsystem. For worst-

case conditions, two require 52 operations, two require 730 operations, and one

requires 50 operations. The magnetic-bias stepping switch will conservatively be

utilized for a total of 576 revolutions in one year. All other switches and relays,

including those for redundant circuitry, operate so infrequently that they may be

analytically considered "perfect switching" and assigned a "Probability of Survival"

of 1. 000. The combination of rockets and despin yo-yo's, as a redundant unit, also

can be assigned a "Probability of Survival" of 1. 000.

5.3.3 Reliability Block Diagram

The reliability block diagram, which includes all components that must

operate properly to ensure mission success, and the corresponding mathematical

models are shown in Figures 5.3-1, 5.3-2, and 5.3-3. These block diagrams

are not signal flow charts, but indicate those components which must operate
properly to ensure mission success.

For the purpose of this analysis, the mechanical assembly (including the motor)

will be considered, after suitable preconditioning, to have a negligible probability
of failure. Consequently, these items are not included in the mathematical model.

Section 3.1 of this report presents evidence to corroborate this decision because

after wearout effects have been eliminated, the motor can be considered as a

simple transformer.

5.3.4 Part Failure-Rates

The failure rates used for individual part types were previously listed (3).

These failure rates are averages for generic classes and were estimated on the
basis of

• Maximum use of MIL-Standard and RCA "Spacecraft Standards"

parts

• Preconditioning of all parts in accordance with RCA Specification 1750012

• Limiting the electrical stress of the parts in accordance with the

established derating policy (3)
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In addition to the general failure rates, the following special rates were used in

this study:

• QOMAC, Magnetic-Bias, and Momentum (spin) Coils used 0. 035%/1000

hours during operation and 0. 018%/1000 hours for aging when not in use

• Bolometer sensor failure rate chosen as 0.40%/1000 hours

• Sensistor failure rate chosen as 0. 015%/1000 hours

• Magnetic-bias stepping-switch failure rate chosen as 0.04%/1000

revolutions

5.3.5 Survival Probability

Three system configurations with varying degrees of redundancy were

shown in Figures 5.3-1, 5.3-2 and 5.3-3 with, respectively, no redundancy,

sensor redundancy only, and sensor and pitch-axis-stabilization control electronics

redundancy. The configuration shown in Figure 5.3-3 is recommended; the other

configurations are included for comparison.

The survival probability for any series of items in a system is given by:

- (_0 T
Ps = e (5.3-1)

where

(_t)T = ;kl tl + h2 t2 + _3 t3 + " " " + h t tt

When several subsystems have the same operational period, (i.e., t_ = t2 -- t 3 - t'

andt 4 = t5 = t6 = t" etc.)then

where

-[(_1 + _2 + h3)t' + (_4 + h5 + _6 )t" + "" "]
Ps = e (5.3-2)

_, is the failures/hour or failures/operations

t is the number of hours or operations

The survival of any two redundant items with individual probabilities of PA and PB

respectively and with perfect switching is given by:

PAB = PA + PB - PA " PB (5.3-3)
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A summaryof the individual "black-box" componentreliabilities is presentedin
Table 5.3-1.

Usingthe modelshownin Figure 5.3-3 andthe valuesgivenin Table 5.3-1, then

PsYs = PAA " PBCDE PF " PG PHH PI " P] (5.3-4)

or

PsYs : 0.923 (5.3-5)

5.3.6 Additional Analyses

To determine the effects of varying amounts of redundancy and the use of

high-reliability ("Minute Man") parts where applicable, the reliability analysis
was extended.

Although the high-reliability parts are extremely dependable, the use of these

parts is prohibitive because of the high cost, the long-lead delivery time, and

the increased difficulty in obtaining some items. The failure-rates for the high-

reliability parts are given in Table 5.3-2.

Using these parts where applicable in the configuration shown in Figure 5.3-3, the

resultant reliability is 0. 961; in Figure 5.3-2 it is 0. 926 as compared to 0.844

without the high-reliability parts.
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TABLE 5.3-1. RELIABILITY ANALYSIS SUMMARY

Subsystem

Horizon Scanner

Pulse Width Modulator

Compensation Amplifier

Power Summing Amplifier

Frequency-to- D- C
Converter

D-C to D-C Converter

Encoder

Vee Horizon Scanner

Attitude and Momentum

C ontr o 1

Programmer

Data Return

Mag. Bias Switch

Circuitry

Mag. Bias Stepping
Switch

Relays

Coils

QOMAC (Operational)

QOMAC (Aging)

Momentum (Operational)

Momentum (Aging)

Mag. Bias (Operational)

Mag. Bias (Aging)

Failure Rate

(%/1000 hrs. )

0.549

0. 655

0. 146

0.222

0. 143

0. 122

0. 173

1.010

4.409

1. 283

0.013

0.040

(%/1000 oper. )

0. 020

(%/1000 oper. )

Probability of Survival

Individually

P A = 0.953

PB = 0. 944

PC = O. 987

PD = O. 981

PE = O. 988 /

PF -- O. 989

Pc = O. 985

PH = O. 915

0.977

0.998

>
0.999

0.998

In System

Arrangement

(Fig. 5.3-3)

PAA = 0.998

(Redundant)

PBCDE = 0.991

0. 989

0.985

(Redundant)

PHH = 0.993

(In total)

PI = O. 971

0.035

0.018

0. 035

0.018

0. 035

0.018

0.999 j

0.999

0.998

0.999 >

0.998

0.999

0.998

(In total)

P! = 0.994
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TABLE 5.3-2. FAILURE-RATESOF HIGH-RELIABILITY PARTS

Component Failure Rate (%/1000hrs.)

Resistors, Variable 0. 0008

Comp. & Film 0. 0005

Diodes 0. 002

Capacitors, Mica, Ceramic 0.0005

Mylar, Tant. 0. 005

Transistor 0. 007

Sensistor 0. 002
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Section 6.0

SYSTEM-PERFORMANCE TEST REQUIREMENTS

6.1 PITCH-AXIS SIMULATION

6.1.1 Component Testing

The evaluation of the pitch-axis-stabilization control subsystem will be done

on both a component basis and a subsystem basis. Each component defined by a block

in Figure 1.3-2 will have input-output specifications established by control-loop per-

formance requirements. All components within the loop, with the exception of the

motor and shaft pulse-generator (incremental encoder), may be specified as a trans-

fer function relating the input voltage (current) to the output voltage (current) and

tested with standard laboratory equipment on a "go-no-go" basis. The motor and

shaft incremental-encoder require mechanical test equipment to establish their trans-

fer function. For the motor, a standard dynamometer apparatus will suffice; for

the encoder, a counter which is started and stopped with the index pulse (that rep-

resents the spacecraft position with respect to the rotating shaft) will indicate proper

operation. The rise-time and pulse-width of the encoder output will be sampled to

ensure that there would be no possibility of dropping pulses over the temperature

range. A precision speed-control for testing the encoder is not essential because

the desired output of the encoder is a fixed number of pulses per-revolution of the

shaft. The evaluation of pitch-axis control-loop electronic components (as dis-

cussed in Section 3.1. 3) has shown that state-of-the-art components will meet the

performance specification indicated in Section 1.2. Vacuum-operation of rotating

components is not as clearly established as other devices and must, therefore, be

tested under conditions which closely approximate the actual operating environment.

Specific recommendations are contained in Section 9.2 of this report.

6.1.2 Subsystem Evaluation

The minor-loop consists of a differential amplifier, a power amplifier, a

motor and shaft encoder, and a frequency-to-d--c converter. Meaningful results

can be obtained from either connecting the components together on the bench or on

the spacecraft housing which is rigidly rdounted to a support structure. Under these

conditions, the components may be turned on and checked for operation at the bias

speed. The loop will maintain the flywheel at the bias speed (tentatively set at 150

rpm). The performance of the loop under dynamic conditions would be essentially

the same as in the orbit condition; the only difference is in the output of the digital
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encoder. During ground tests, the encoder senses only speed changes of the fly-

wheel; in space, it senses changes in both spacecraft speed and flywheel speed.

However, under normal operation the spacecraft would produce a modulation of

less than 0. 1% on the output of the encoder. The conclusion can, therefore, be

drawn that ground observation of the minor loop is equivalent to space operation

and means that the bias voltage may be set and checked on the ground with no

further adjustment required. For the parameters used in Section 3.1.4.1, the

bias-voltage setting to within 1.0% of the nominal 150 rpm would produce an off-

set error of 0. 12 °. A setting to closer than 1.0% is not essential because the

nominal is likely to be changed when the spacecraft is orbited. However, bias-

voltage variation with temperature or external voltage variation will be held (and

specified) to less than 0. 5%.

6.1.3 "Torque-Free" Testing of the Pitch-Axis-Stabilization Control Subsystem

The closest approximation to simulating orbit conditions is to mount the

pitch-axis control package on a structure which is supported by an air bearing.

The dynamics of the pitch-axis loop can be made to almost perfectly duplicate or-

bit conditions. This is easily demonstrated by adjusting the loop gains to values

that would indicate system instability (in the absence of external damping). Under

these conditions, the pitch-axis would fail to lock-on by reaching full speed in one

direction, then reversing, and reaching full speed in the other direction. If ex-

ternal damping were present, the gain values would be larger than those predicted.

Another indication of the suitability of the air bearing for pitch-axis testing is the

damping provided by the control-loop as compared to "air-ball" damping.

From the parameters of Section 3.1. 4.1, the pitch-axis-loop damping constants

may be approximated by

C = 2 _ ] cz in.-Ib/rad/sec
p n

This gives "C" a value of 15 in.-lb./rad./sec, for

= 0.2 (see Figure 3.1-11)

Iv = 358 in. lb. sec. 2 , spacecraft moment-of-inertia about the
pitch-axis.

_n = 0.11 rad./sec., pitch-axis natural frequency

Air-ball damping can be shown to be less than 0. 1% of this number. The performance

of the pitch-axis loop can, therefore, be evaluated with a high degree of confidence

from the standpoint of gain settings, pointing accuracy, and jitter rate.
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The effect of external torques canbeminimized, but not completelyeliminated.
Windagewill addor subtractmomentumandwill precessthe spin axis, andgravity
torques will precessthe spinaxis. However, the latter effect canbemadesuf-
ficiently small to permit extendedperiodsof continuousoperationwithoutdisturb-
ing the tests. This is particularly true if anexternal-torque which is equivalentto
the effect of the QOMAC-torqueis usedto precessthe spinaxis backto the original
(or desired)orientation of the test structure. Onevery goodsubstituteis the gentle
applicationof the finger or small piecesof clay droppedontothe outer edgeof the
test structure. A gentleapplicationof pressure is precisely what is doneby ground
commandwhenthe spacecraftis in orbit. Therefore, it is difficult to justify a
groundenvironmentwhichdoes notallow for implementingtorques onthe spacecraft
in the laboratory.

Thedirect applicationof torque doesnot precludethe testing of the magnetic-
torquingsubsystem. However,magnetic-torquingof a test structure simulating
pitch-axis performancewill not materially contributeto the confidenceof the com-
plete system. Section6.3 containsa discussionof the testingof themagnetic
properties of the spacecraft.

6.1.4 Tentative Specifications for Air-Bearing Test

Two arbitrarily--established criteria have been determined for defining per-

formance specifications for the air--bearing tests. These are:

• 0.24 ° per-hour rotation of the simulated test structure about the

pitch axis;

• 0.3°/sec. precession of the pitch-axis about its initial orientation

at the start of the test;

The first requirement places a limit on the rate at which the flywheel can gain or

lose momentum. The value of 0.24 ° per-hour corresponds to a 2% per-hour change

in the flywheel speed. To meet this specification, a maximum of 0. 1% of the fly-

wheel momentum can be introduced in a direction normal to the initial direction of

the flywheel axis. This requirement is easily satisfied by air-ball turbine-torques

and release mechanisms.

The second requirement merely limits the gravity-forced motion of the pitch-axis

to approximately 0. i times the free-motion (or nutation) of the pitch axis. The

value computed in Section 3.3.3.2 for the free motion (i. e., for ¢ ) was 0.51 rad./

second or 2.92°/second. The separation of the two motions permits the damper to

operate in a manner closely associated with the actual orbit conditions. A dis-

cussion of independent damper testing is presented in Section 6.2. To satisfy the

second requirement of the air-bearing test, the center of mass must be located

within 0. 0014 inches of the center of support. The sphericity of the ball is at least
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a factor of two better than 0. 0014 inches; therefore, geometric considerations are
not limiting. However, deflections of the structure do contribute to shifts in the

center of gravity; consequently the test structure will be made more rigid than would
otherwise be required by the spacecraft to meet launch-environment conditions.

Present experience indicates that a test structure can be built which, even with

large angles, will satisfy this requirement.
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6.2 NUTATION-DAMPER OPERATION

The nutation--damper is a passive device and produces no direct measurable

output signals. The mechanism by which undesired motion of the spacecraft about

the roll and yaw axes are reduced is discussed in Section 3.3. The nutation-damper

test is designed to: verify operation of the expansion mechanism ; and verify the

coupling factor. The first test ensures that, over the planned temperature range,
damping fluid will not be lost and the damper tltbe will not be overstressed. The

expansion chambers to be tested are shown in Figure 7.2-1.

The second test is intended to confirm the factor defined approximately by equation

(3.3-6}. This equation is repeated as equation (6.2-1).

I d cz23

Hd - (6.2-1)
(1 + 7-S) _

where

I d is the fluid mass moment of inertia

_- is equal to r2p/4_ z

The condition for optimum damping, established in Section 3.3.3, was that

I
7- --

where _ is the forcing-frequency of the spacecraft as determined by free-nutation

in orbit. The device shown in Figure 6.2-1 would lead to a direct check of the

damping properties of the damper because it would verify the following equation

r 2 p ]

The technique to be used would set the torsion pendulum shown in Figure 6.2-1 in
motion. Then, at a specific time, the amplitude of the motion would be measured

by a second measurement at the end of a complete cycle. If these two measurements

are designated _l, and 82 and if the torsion spring and inertia are adjusted to oscil-
late at _b radians/second, then the damper parameters are related to the difference

between the two measurements by

A _ Id 77 sin S

# (6.2-2)
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--_ TORSION SPRING, K IN LB/RAD

OAMPER, TO

_ :_ 05l RAD/SEC

I

where

Figure 6.2. -1. Nutation-Damper Test Device

8 is equal to 81 - 82

/d is equal to damper mass moment of inertia

/p is equal to pendulum moment of inertia

is identically equal to 1/2 tan -1 (r2op_/4_z) ,% 22½0

The following assumptions were made.

]d < < lp

The requirements for the measurement of 81 and 82 may be obtained from sub-
stituting the following values. Let

Ip = lO I d

sin S = 0.38
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Then,
A_ I 7r 0.38

- 0.1

which indicates a 10% change in 3 during a single oscillation of the pendulum at the

frequency of ¢ rad./second. The value of _ used to compute the damper time-

constant in Section 3.3.3.2 was 0. 51 rad./sec.

Previously, it was assumed that the damper was the only cause of energy loss in the

pendulum; actually, t run will be made with a simulated damper-inertia. If the
avg.

value of _ changes by a significant factor compared to that expected, then the ratio

of lp to Id will be increased until there is a difference in the ta,g" change in _ and
that expected from the damper. It is the difference between the changes under the

two test conditions that will be used to compare the measured AS/_ value with that

predicted by equation (6.2-2).

Methods other than that just described will be considered for testing the damper under

gravity conditions. A torsion pendulum mounted in the horizontal position may be dif-

ficult to implement, but if it can be done, it will serve as a check on the effect of gra-

vity on the damper operation. As long as the damper is maintained in a filled condi-

tion, gravity effects should be negligible.
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6.3 MAGNETIC TESTING

Disturbance torques arising from the interaction of the earth's magnetic field

with current loops, permanent magnets, and non-spherical permeable materials

internal to the spacecraft can be minimized by careful design and preflight com-

pensation of the vehicle. The discussion in Section 2.3.4 shows that the major

disturbances experienced by the FSMTMS are magnetic in origin. Complex geom-

etries and non-linear permeabilities prohibit the summing of individual source con-

tributions in a magnetic-disturbance torque analysis. A practical solution to the

problem is to determine the resultant spacecraft magnetic-dipole moment for each

operating mode; this moment is then converted to spacecraft torque by the magneto-

static equation expressed by the vector cross-product of the dipole moment and the

magnetic field.

The space-vehicle dipole moment can be established as follows: (1) by measuring

the spacecraft torque in a test magnetic field; (2) by measuring the induced emf

(produced by relative rotation between the vehicle and a coil system); (3) by field-

mapping techniques; and (4) by actual in-orbit observations of the spacecraft

attitude.

The torque level developed by the satellite dipole in the test magnetic-field is ex-

tremely small. To achieve measurable results with available techniques for sup-

porting the spacecraft (even if state-of-the-art air bearing supports are utilized),

a very large, accurate, test field would be required. This field could be achieved

utilizing a three-axis, programmed Helmholtz-coil system. A system of this type

has been studied during work on another RCA program. However, it is considered

undesirable to use this technique because of the cost and complexity. Furthermore,

the test field must be much larger than the actual field that the spacecraft will ex-

perience in space; therefore, the results will be'dependent on the linearity of the

produced torques as a function of magnetic-field intensity. A successful technique

has been developed on another program to demonstrate the ability of a coil to change

the momentum of a spinning spacecraft utilizing the earth's ambient field. However,

this technique is only applicable to torque generation around the momentum axis and

requires long integration periods to measure the relative effects of the dipole.

Actual in-orbit observation will be utilized to compensate for the pitch-axis resid-

ual dipole. This technique is discussed in Sections 3.2.3 and 3.8.3.8.

The emf method of measurement was previously described(9). It has been used

successfully on several RCA satellite programs but requires a large spherical-

coil system for operation plus gimballing and support of the spacecraft to achieve

relative rotation. For small space-vehicles, this method permits a rapid deter-

ruination of the satellite dipole moment. Once the dipole is known, the correct

amount of permanent-magnet material can be mounted on the vehicle, with the

proper orientation, and the residual dipole compensated to approximately 0.05

ampere-turn-meter 2 (50 absolute dipoles).
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The inherent resolution of field-mapping measurements is better than that of the

emf method because this is a quasi-static test, and, therefore, free from dynamic

errors. An advantage of field-mapping is that it permits measurements in a region

of a nominally uniform field. A field-free region is not usually necessary. This
method has been used in tests on several RCA spacecraft (10) and is recommended

for the FSMTMS magnetic tests. The technique achieves a three-axis dipole-

moment determination by sampling the radial magnetic-field of the spacecraft on

a spherical surface. An inexpensive, portable, flux-gate magnetometer can be

used; the magnetometer has a resolution of less than 1 gamma (geomagnetic field

in New Jersey is approximately equal to 57,000 gamma or 0. 57 gauss) and a sta-

bility of 1 gamma in 5 minutes (drift is 5 gamma/hr., random).

If the magnetic sensor is moved over a spherical surface enclosing the spacecraft,

it will sense the changes in both the direction of the earth's magnetic field and the

near-field structure of the vehicle; furthermore, the former field variation is ap-

proximately 1000 times greater than the latter. To avoid this problem, the sensor

is positioned along a radial line-segment and the vehicle rotated about angles _ and

¢ as shown in Figure 6.3-1; the magnetometer is zeroed at the starting point l_, _ =

0°, 0° ) and measurements are made relative to this point. This technique has the

same effect as adding an arbitrary constant to each data point which is then cancelled

out during the processing of the magnetic data.

MAGNETOMETER

SENSING HEAD

t

Figure 6.3-1. Magnetometer Test Setup
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Thepresenceof ferromagneticbodiesnear thetest site will introduceanerror into
the results becausethefield-lines will tendtoward thesebodiesanddistort the near-
field structure. The presenceof underground,or otherwiseunknown,ferromagnetic
bodiescanbedetectedby observedanomaliesin the local geomagneticfield. The
test site shouldbe locatedso asto avoidthese. A facility of this typepresently
exists at the Astro-Electronics Division of RCAandwasbuilt after a magnetic
survey indicatedthat the chosensite was relatively free of disturbing bodies.

Despiteattemptsto eliminate ferromagneticmaterial on board the spacecraft,

varying amounts still remain on some space vehicles (e. g°, those with nickel-

cadmium cells). The effects of these materials on the dipole test may be divided

into two major categories. The first effect is that of residual magnetism in the ma-

terial; it will be measured as if it were a permanent polarization. If the residual

magnetism of the vehicle changes under severe vibration (e. g., under launch con-

ditions), the dipole will change from the measured value and, to this extent, is un-

predictable and represnets a source of error. (This is also the case for permanent

magnets.) The second effect is geomagnetic distortion due to permeable materials

in the spacecraft. This effect depends upon the shape, location, and amount of ma-

terial. Qualitatively, a ball of material located at the center of rotation would not

introduce any error because the induced field due to it would be constant at the sen-

sor under vehicle rotation. Similarly, a long rod would not contribute any error

because its effect at the sensor would be a double-frequency field and not a dipole

field under spacecraft test positioning. More complicated geometries and locations

of ferromagnetic material on board the spacecraft can lead to a non-zero error.

In these cases, each situation must be analyzed individually. However, for small

quantities of material, the induced-field contribution to the measurement may

usually be neglected and, if the measurement were made in a field-free environ-

ment, this problem would not be present.

The effects discussed in the previous paragraph lead to an error in the ability to

measure the spacecraft dipole and a consequent change from the ground-determined

value. However, data feedback from a number of vehicles indicate that this change

may be partially predictable. For example, the difference between on-ground di-

pole measurement and observed in-orbit dipole has consistently been in one direction;

this is illustrated in Table 6.3-1. The orbit-bias is the magnetic-bias dipole that is

added to the ground measurement to obtain the in-orbit observed dipole.

Note that in the Table, vehicles A and B required a larger orbit bias than did ve-

hicles C and D. This decrease in orbit-bias occurred when degaussing was applied

to the spacecraft whip antennas prior to both ground measurement and launch. The

disturbance analysis in Section 2.3.4 used an assumed orbit-bias of 1.0 ATM 2 about

all three spacecraft axes (a conservative estimate). Continued observation and feed-

back from future in-orbit vehicles, plus experiments on the response of permanent

magnets to vibration and shock, should put the ferromagnetic change error on at least

a semi-quantitative basis and permit the use of more realistic dipole values.
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TABLE 6.3-1. COMPARISONOF OBSERVEDAND MEASUREDRESULTS

(Orbit Bias is the DifferenceBetween
MeasuredandObservedValues)

Vehicle

A

B

C

D

E

Orbit Bias
(Ampere-turn-meter2)

-0.8

-0.62

-0. 155

-0.23

-0.2
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6.4 HORIZON SENSOR

Component-level horizon-sensor tests will be performed in a manner similar

to that now utilized for the TIROS program. The tests will be used to determine the

following parameters.

• Field of view using a collimated source

• Electronics gain-noise and time-constants (over temperature)

utilizing standard electrical measuring equipment

• Bolometer resistivity (over temperature)

• Bridge-circuit null and stability (over temperature)

• Sensor response to a simulated sun-input

• Sensor output response utilizing an extended IR source and a

chopper (the response will be determined for an equivalent source

temperature from 200°K to 300°K and for sensor rotational-rates

(or equivalent chopping rates) of from 75-rpm to 225-rpm)

• Sensor output-noise utilizing a noise-spectrum analyzer.

System-level tests will require outputs from the sensors to operate the pitch-axis-

stabilization control subsystem and to check out the attitude-telemetry functions.

Careful measurement must be made to determine any effects on the sensor output

due to spacecraft RFI and due to magnetic-disturbances as the sensor rotates with

the flywheel. This requirement leads to the desirability of performing all system

tests in a carefully shielded area. A simple, extended, IR source should be satis-

factory for these tests because the predicted threshold-to-noise ratios are presently

5 to 1. However, careful experimental design must be performed to ensure that

there are no unwanted '_ot-spots" over the background area that is scanned by the

sensors. A simulation of the sun-input will be utilized to check the accuracy of the

proposed gating technique for blocking sun-inputs to the pitch-axis-stabilization

control subsystem.
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Section 7.0

SYSTEM ENGINEERING

7.1 GENERAL

Various types of designs for implementing the flywheel stabilized, magnet-

ically torqued attitude control system (FSMTMS) on meteorological satellites were

investigated during the Study Program. As a result of the parametric studies dis-

cussed in detail in Section 3.0 of this report, a final design was tentatively selected.

The mechanical design, the power requirements during the modes of operation,

and the system interfaces for power, telemetry, and command and control are

summarized in the following paragraphs.
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7.2 MECHANICAL DESIGN

The general arrangement of the FSMTMS control and stabilization system

mounted onto a base sensor-ring is shown in Figure 7.2-1.

7.2.1 Control-Equipment Packaging

The control equipment added to the sensor ring is in two packages, an

upper assembly and a lower assembly. The lower package consists of an annulus

tube filled with fluid which serves as a viscous damper. A momentum-torquing

coil is bonded onto the periphery of this tube. Also mounted to the annulus is a

despin yo-yo installation. This complete subassembly is then easily attached to

the base sensor-ring.

The upper package consists of a flywheel-drive assembly as shown in Figure 7.2-2.

The housing of this assembly is used as part of the structural backbone. The

balance of this assembly contains all the associated electronic units of equipment,

including the QOMAC coil and pitch-axis control rockets. This second assembly

may be pretested and operated prior to assembly on the tubular truss.

The numbers on the drawing of Figure 7.2-1 represent weight item locations. A

weight statement and moment-of-inertia data about the centroidal principal-axes

(which have been caused to coincide with the yaw, pitch, and roll axes of the space-

craft) are presented in Table 7.2-1. The RTG power units have been physically
located eccentric to the roll-axis trace which allows clearance for an abortive

launch ejection; however, for center-of-gravity and moment-of-inertia computa-

tions, the RTG units have been considered concentric to the same trace. The

moment-of-inertia calculations show the final values as well as values obtained in

the initial calculation; the two sets of values are within approximately 5% of each

other. The preliminary values have been used in all control-system analyses.

7.2.2 Control-Equipment Geometry

The viscous damper tube is a 1. 00" O.D. x 0.049" aluminum wall alloy

tube rolled to the annulus diameter and welded into a ring. To compensate for

large temperature changes resulting from orbit day and night exposures, thermal

expansion is provided using the spring-loaded piston (2) as indicated in the figure.

Dual "O" rings are provided as redundancy against leaks, and a final sealing cap

should be used to prevent any fluid leakage to space. The installation of proper

mass and cable length for the yo-yo despin-device is based on extensive RCA ex-

perience. Any new techniques (e. g., elastic properties of the cable) will be in-

corporated as they are developed.

The upper package assembly in Figure 7.2-1 shows the use of a dual flywheel with

each individual wheel being a single bar with weights (including bolometers) at its

extremities. The two flywheels are mounted at the ends of a common drive shaft
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TABLE 7.2-1. SUMMARY OF WEIGHT AND MOMENT--OF-INERTIA DATA FOR

FSMTMS SYSTEM

TABLE 7,2-1, SUMMARY OF WEIGHT AND MOMENT-OF-INERTIA DATA FOR FSMTMS SYSTEM

Item

No,
Item

Distance

Weight From
WD

(W) Separation (lb. -in. )
(Ibs.) Plane {D)

{inchas)

Sensor base structure 67, 20

Thermal control 20, 80

Harness 25, 00

Batteries 30, 00

Cameras ACVS g_ HI:tIR 58, 10

Clock 33, 20

PC M 20, 00

Transmitter 5, 00

Beacon and killer 4, 50

Tape recorder (2) 36, 09

Recorder 10, 00

1 Uniformly distributed

to base 309, 60

Adaptor to launch vehicle 43, 70

2 BTG 2 units @ 35, 00 70, 00

2A Truss tubes 6 pieces 4, 80

Total supplied by customer 428, 10

3 Flywheel units 2 pieces 11, 34

4 Stabilite housing assembly 7, 64

5 Structure on housing 1,22

6 Amplifier and signal

conditioner 2, 50

7 Coil bias stepping switch .90

8 Computer command control 3, 80

9 QOMAC coil and support 2, 00

10 Pitch rockets installed 2, 50

11 Trim rockets installed ,90

12 Fluid damper tube 1, 55

13 Fluid damper thermal relief 1, 00

14 Damper fluid 3, 48

15 Momentum coil 1, 60

16 Yo-yo despin device 4,50

Total supplied by contractor 44, 93

Total gross at launch 473, 03

Spacec raft

(Total gross less

adaptor) 429, 7

Inertia values used for

all design computations

6.5 2010 62000

20,8 1460 15700

32,0 154 94O

52.0

52.0

52.0

55.9

52.0

56.2

52.0

49.1

49.8

12.2

14.4

12.2

12.2

13.5

12.9

I F =

590

398

63

140

47

213

104

123

45

19

14

42

19

61

5502

Yaw-Axis Pitch-:Axis Boll-Axis

Moment- Moment- Moment

of- of- of_

Inertia Inertia Inertia

(lbs. -in. 2) (lbs. -in. 2) 0be. -in. 2 )

2700

650

122

53

57

81

210

22

14

840

540

1890

950

51000

11100

2905

21380

11650

1170

4620

1380

7100

3510

3230

1230

420

7

942

460

51000

4140

2905

20400

12300

2160

4660

1510

7100

3300

3290

1220

430

545

965

460

86769 122104 116385

90720 130317 123487

Flywheel rotational moment-of-inertia

Spacecra[t Ip 130317

Flywheel ][ ,3480
37.5

11.34 . [17.5) 2 = 3480 lbs.-in. 2
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which, in turn, is bearing-mountedinto a housing. Otheressentialparts suchas
the motor, encoder, slip rings, andlubrication are containedwithin this housing;
this housingalso providespart of the structural backboneof the upperpackage.
The remainingstructure is suppliedby anattached"I-section" beamanda collar.

Laybackof the flywheelarms is providedto ensurethat the vector of thetotal sin-
gle flywheelmasspassesthroughthebearingwhenapplied torquescoincidewith
yawor roll axes. This designprovidesa minimumbending-momentsystemon the
drive shaft, andcausesthe shaft--deflectionslopeat thebearingsto be zero. The
zero-slopeprotects the non-self-aligningbearingsandmaintains radial positionof
the shaft-mountedparts to the fixed parts for the motor andencoder.

The dual-flywheelgeometryprovidesthe following advantages:

• Thegeometryforms a symmetrical mass-distribution with respectto
the principal axes, therebyfacilitating massbalancingandminimum
weightfor the spacecraft.

• The single-bar flywheelpermits easyconstruction. Thelarge-diameter
of the flywheel is the only logical meansof supplyingthe required rota-
tional flywheel-momentumwhile preserving a low control-systemweight.

• The side-scanningbolometersmountedinto the flywheelweightscan
scana field of view unobstructedby the spacecraft.

The redundancyof bolometerunits is easily accomplishedby using
identical massunits at all four extremities of the dual flywheel.

Static radial loadson thebearingsare minimizedby the useof the dual-
flywheelgeometry.

Theflywheel-arm material is a fiber-glass epoxyselectedto minimize interference
with anyantennafield. The shaft-bearingsselectedare BardenCorp. bearing203K
code3 which is an openbearing with a steel retainer. This bearinghasa radial
play of 0.0002/0.0004anda thrust play of 0.004 nominal. Static-loadratings of
2720poundsthrust and 1000poundsradial havebeenassumedfor zero rpm andare
in excessof any loadsdevelopedduring launchenvironment.

7.2.3 Electro-Mechanical Design

Because the flywheel will operate in a zero-G environment in orbit, the

only load on the bearings will be due to misalignment or stray input, and will be of

very small magnitude. Operation under such "no-load" conditions will produce

long-life expectancy.

The possibility of large differential-axial thermal expansion between the shaft and

the housing exists and has been compensated for by causing the bearing at one end

to be capable of taking thrust in either direction. The bearing at the other end will
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riot take thrust in either direction; this is accomplishedby mountingthe bearing in
a diaphragm(whichmaydeflect out-of-planeat extremely-light thrust load)which
is capableof sustainingall radial-load imposed. With this systemof suspension,
the only play existing at thebearings is that betweenthe inner andouter "races",
thus minimizing the eccentricity betweenrotating andfixed parts of the motor and
encoder. Preloadingof a bearing (asa meansof rolling theballs up the "races")
to eliminate anyplay undervibratory loadingis impractical. Thethrust-load upon
the bearingsmaybe 15-poundsat 1-Gwhich, with a prototypeinput of 10-G(6Q),
gives a thrustload of 900pounds. If preloadsof this magnitudewere devised, then
the bearingwouldbe loadedto 900poundsduring operation(with consequenthigh-
friction force, wear, andshort life expectancy). Theanticipatedbearing-friction
for eachbearing installed andwith nopreload is

At 1-Gand 150rpm = 0.18 to 0.20 inch-ounces

At 0-G and 150 rpm = 0.07 to 0.10 inch-ounces

If a preload of 900 pounds were used, the bearing would show (900/50) (0.70) =

12.5 inch-ounces.

Some lubrication is required for the bearings, motor brushes, and slip-rings to

prevent high-friction and wear of adjacent parts in the gas and moisture-free space

environment. A proposed system based on some experience is to store a sponge-

type reservoir of instrument oil inside the housing (per MIL-O--6085A). The details

concerning the operation of brushes in the space environment is discussed in Sec-

tion 3.3.1. 10 of this report as is the choice of a proper lubricant. Extensive RCA

experience indicates that, while the brushes normally present the severest limita-

tion on the electro-mechanical operation of the system, a fully satisfactory solution

to this problem has been evolved in the present system. Moreover, there is con-

siderable experimental data on the operation of bearings in the space environment

and no serious problem should be encountered if the proposed design is utilized.

A labyrinth-type seal (the clearance is kept small between the housing and the shaft)

is used to meter any molecular exit from the otherwise-entrapped atmosphere. In

time, the interior will become a vacuum harder in nature than the vapor pressure

of the stored oil. Some oil will then evaporate into the trapped atmosphere, and

molecular movements will cause contact with and lubrication of all parts. As mol-

ecules leak past the labyrinth, the process repeats for the life of the spacecraft.

Figure 7.2-2 illustrates the use of slip rings for the transmission of bolometer sig-
nals. While this is the simplest and lightest system, wear and noise characteristics

under the indicated environment have not been fully established for the linear-travel

required. Although extrapolation of life-expectancy data gives reasonable expecta-

tions, an alternate system of signal transmission is also proposed using a bank of

rotary transformers. An actual unit of this type will require further detailed study

and development.
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Static balance and dynamic rotational-balance at 150 rpm, to limits of accuracy

which shall be determined at the time of manufacture, will be applied to the flywheel

and housing complete assembly.

A detailed vibratior_ and structural analysis of the pertinent parts was made. (3)

The slip-ring system of earth-IR signal transmission may offer reliability problems;

therefore, a circumventing technique using rotating mirrors and fixed bolometer

heads was also studied. Figure 7.2-3 shows an arrangement, using a double-sur-

face mirror mounted on the flywheel shaft at the proper skewed-angle and reflecting

signals to the fixed bolometer heads.
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7.'3 SYSTEM POWER REQUIREMENTS

7.3.1 Initial Alignment or Transient Upset

Two modes of system power utilization can be isolated. The first mode oc-

curs during initial alignment, or during recovery from a large transient upset; this

mode consists of the power requireme_ drains given in Table 7.3-1.

TABLE 7.3-1. INITIAL ALIGNMENT MODE POWER REQUIREMENTS

Power Drain
Watt-

Item at -24.5 Volts Operation Time
Input Minutes

High-Torque 4.26 watts 20 orbits maximum - 8850

QOMAC Coil 2080 minutes

QOMAC Programmer 2.00 watts 2080 minutes 4160
and Decoder

Momentum Coil 750

Momentum

Programmer and
Decoder

Pitch-Axis-

Stabilization Control

Subsystem (Including

"Vee" Sensors}

0.48 watts

into 70%

efficient

converter

2.00 watts

30 cycles maximum -
15 orbits -

1560 minutes

1560 minutes 3120

4.3 watts 2080 minutes maximum 8950

14.2 watts 15 minutes maximum 213

4.8 watts 22 orbits - 2290 minutes 11000

Telemetry 1, 00 watts 15 minutes maximum 630

Control Unit 42 orbits - 630 minutes

TOTAL 37673

A power profile for this mode is given in Figure 7.3-1(a). It should be noted that

the QOMAC, momentum-control, and peak pitch-axis control operations do not oc-

cur at overlapping times during the initial alignment procedure. A total initial

alignment period of 3 days (42 orbits} has been assumed in the worst-case. The

total average power drawn during this period is 8.5 watts.

7.3-1



r----

= o

=i
=

Ik-

0
0

= o

t9

F-

= _ _o

S IIVM NI )43MOd SIIVM NI _13MOd

7.3-2



7.3.2 Operational Mode

Once the initial alignment is completed, normal system operation will begin.

The power utilization for the operational mode is summarized in Table 7.3-2.

A power profile for this mode is given in Figure 7.3-1(b). The total average power

drawn by the system is 5.33 watts.

TABLE 7.3-2. NORMAL OPERATIONAL POWER REQUIREMENTS

Item

Pitch-Axis-

Stabilization Control

Subsystem (Including

"Vee" Sensors)

Magnetic -Bias

Coil

QOMAC/Momentum

Programmer

and Decoder

QOMAC Coil

Momentum Coil

Power Drain

at -24.5 Volts

Input

4.8 watts

0. 204 watts

into 70%

efficient

converter

O. 25 watts

2.0 watts

QOMAC

2.0 watts

QOMAC

2.0 watts

Momentum

Control

0. 5 watts

into 70%

efficient

conve rte r

Operation

Time

Continuous

Continuous

Continuous

1/2 orbit or

52 minutes

every 4 days

maximum

1 orbit

every 20 days

maximum

2.5 orbits

every 20 days

maximum

1/2 orbit

every 4 days

maximum

1 orbit every

20 days

maximum

Equivalent

Continuous

Drain

4.8 watts

0.204 watts

0. 25 watts

0. 018 watts

0. 007 watts

O. 018 watts

O. 005 watts

0.48 watts

into 70%

efficient

conve rte r

2.5 orbit

every 20 days

maximum

0. 002 watts

0. 004 watts

100 watts 15 minutes

Telemetry maximum 0. 021 watts

Control Unit twice a day

TOTAL 5.33 watts
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7L4 SYSTEM INTERFACES

The mechanical interfaces with the spacecraft of the FSMTMS Attitude-

Control System were discussed in Section 7.2 of this report. Therefore, only the

electrical interfaces are discussed in this section.

7.4.1 Power

All power to the system will be supplied at -24.5 volts from the spacecraft.

Power requirements were summarized in Section 7.3.

7.4.2 Telemetry

All attitude-telemetry and required switching commands will be routed

through the attitude-data telemetry control subsystem. The operation of the telem-

etry subsystem is defined in Section 3.6.6.3 of this report.

All housekeeping-telemetry data will be routed directly to the spacecraft telemetry

subsystem for transmission to the ground station. The points to be telemetered

were summarized in Section 3.7.3. There are a total of 36 parameters plus 10

spares (for future use) which will be monitored. All data will be conditioned in the

control subsystem to assure compatibility with the spacecraft telemetry-subsystem

voltage and impedance levels.

7.4.3 Command and Control

A discussion of the interface between the Nimbus "C" clock and the command

and control subsystem is presented in Section 3.6 of this report. The clock will be
used to: receive and transmit all real-time commands to the command and control

subsystem; supply a 1-pps output for utilization by the attitude-momentum program-

mer; store the start time, To, for the program; and open an interface gate that per-

mits direct transmission from the ground station to the programmer.
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Section 8.0

APPROACH TO SYSTEM SPECIFICATIONS

8.1 GENERAL

This section of the report defines the approach that must be taken to evolve

the required system, subsystem, and component specifications for development of

the FSMTMS control system. The approach basically includes three levels of re-

quired specifications,

• System Input Specification

• Subsystem Specifications

Component (defined here as a functional element, e.g., amplifier,

QOMAC coil) SpecificaUons

Each level of specification is discussed separately in the following paragraphs.
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8.'2 SYSTEM INPUT SPECIFICATIONS

The system-input level of specification defines the criteria and constraints

upon which all design, test, and auxiliary functions are performed. A block dia-

gram form of the type of specifications that will be required is shown in Figure

8.2-1. The development of these specifications will probably be based on require-
ments defined by detailed operations analyses; this level of specification should

be completed prior to any design effort on a system-component level. The

notes in Figure 8.2-1 define the sections of this report where the details are

presented.
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8,3 SUBSYSTEM SPECIFICATIONS

Effort must be devoted to the development of a set of Subsystem Specifications;

this effort will be subsequent to, and in some cases parallel with, the effort devoted

to evolving the System-Input Specifications. The development of the Subsystem

Specifications includes the major portion of the analytical work and includes the

following tasks.

• Dynamical Analysis, including disturbance torques and cross-

coupling effects

• Detailed preliminary accuracy analysis

• Subsystem performance budgets

• Subsystem power budget

• Subsystem weight budget

• Subsystem reliability budget

• Preliminary subsystem design

• Detailed evaluation and design for critical components

• Preliminary system mechanical layout

• Subsystem volume budget

• Subsystem interface study, both with other subsystems and with the spacecraft

• Ground-Station and data-processing study

• Subsystem and System test study

Many of these tasks have been performed during this study program and were dis-

cussed in Sections 2.0, 4.0, 5.0, 6.0, and 7.0 of this report. Preliminary

results are available in all the task areas mentioned above.

Once the tasks detailed in this section are completed, then the specification can

be written for all major subsystems of the FSMTMS attitude-control system. The

required specifications are shown on the upper portion of Figure 8.3-1. The

significant design parameters required to develop the Subsystem Specifications are
discussed in the sections of this report noted in Figure 8.3-1.
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8.4 COMPONENT SPECIFICATIONS

Detailed design effort can begin with the completion of the Subsystem Specifi-
cation; however, it may be a continuation in the case of critical components. This de-

sign effort will lead to the development of complete specifications on a component

level. The required component specifications are defined in the lower portion of
Figure 8.3-1.

The component specifications are used in the construction of the complete control

system and as an input-specification for the purchase of all vendor-supplied com-
ponents.
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Section 9.0

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Summary of Results

The results of the study can be summarized briefly as follows:

• Control System weight (with rockets)

Control System weight (without rockets)

• Continuous System power (average)

Maximum (during initial alignment)

• Accuracy of alignment
Roll/Yaw axes

Pitch-axis, random

Pitch-axis, known offset due to

÷5% variation in momentum

Pitch-axis, known offset due to

3_ ellipticity (0. 013)

• Jitter rates about all axes

• Probability of success for one year

45 lbs.

41.5 lbs.

5.33 watts

14.1 watts

< 0.8 degrees

0.52 degrees

+ 0.6 degrees

_: 1. 3 degrees

< 0.05 degrees/sec.

0.923

These values have some latitude of adjustment, but generally there are small pos-

sibilities of major changes in the weight or power. The gyromagnetic-stabilized

attitude-control system, as shown by several designs on other applications, tends

to be in the range of 10% of the total system weight. The power is not a strong

function of weight; for the missions studied (which are similar to the meteoroligical

mission), 6 to 8 watts is the general range. Therefore, confidence can be placed

in the weight and power estimates because they were arrived at independently during

this study program.

The accuracy figures for the performance of the roll/yaw axes are compatible with

the orbit data for roll/yaw; however, the pitch-axis performance is based exclusively

on laboratory experience.

The probability of success value of 0.923 has not been given a confidence factor be-

cause there is no statistical data available on the total system. The significance
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of the number is that it was computed by precisely the same techniques used on all

other systems developed at AED. It is, therefore, extremely useful for a com-

parison to other attitude-control systems.

9.1.2 Performance Verification

On the basis of this study program, and particularly section 6.0, the con-

clusion is drawn that air-bearing testing of the pitch-axis control subsystem is

practical and will produce results which would add confidence to the spacecraft per-

formance in orbit. It is very probable that air-bearing testing under vacuum con-

dition can be closely approximated by reducing windage effects on the test device.

No direct magnetic-torquing of the final spacecraft or test structure is recom-
mended because of the direct experience with orbit operation. Only measurements

of the magnetic proporties of the spacecraft would be required.

9.1.3 Ground Stations

The study program has shown that minor changes would be required at exist-

ing Nimbus ground stations to accommodate the attitude-data acquisition. Figure

3.8-3 illustrates the ground-station components required to record the attitude data.
It is likely that the printers and counters may be made available from existing equip-
ment at the station because of the short time they would be required for attitude-

data. The data-controller(3) would be supplied specifically for data acquisition and

would be part of the gyromagnetic-stabilized attitude-control system development.

The spacecraft attitude-control command system is compatible with the Nimbus "C"

clock which will be used to activate the roll/yaw and momentum control. Other com-

mands would go directly into subsystems; however, these would be transmitted by

the presently-available real-time command equipment.
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9.2 RECOMMENDATIONS

9.2.1 Review Need for Rockets

The inclusion of rockets is a protection against two failures which are out-

side the worst--case of consideration. The first failure is a :_50% launch-vehicle

spin-rate error. The +50% figure is almost impossible because the launch vehicle

can not exceed a specified spin-rate by the physical limitations of the spin rockets.

If the failure produces a spin less than nominal but even greater than 50%, then the

control system can recover and operate. Therefore, the main consideration is

whether proper orbit can be achieved when the launch-vehicle spin-rate is 50% or

more below nominal.

The extensive RCA experience with yo-yo despin mechanisms indicates that a double

failure is implied if they fail to release. Each mass has at least two pyrotechnic re-

lease pins and each pin has a failure rate of approximately 1 per 10,000 operations.

9.2.2 Development of the Pitch-Axis Drive

It is recommended that the design shown in Figure 7.2-2 be constructed as

a working engineering model and operated in the closed-loop configuration in a

vacuum chamber providing atmosphere of 1 to 2 x 10 -6 mm of Hg. for periods long

enough to ensure an equilibrium condition has been reached. On the basis of cur-

rent tests at AED, this would be between 500 and 1,000 hours. If successful opera-

tion is experienced during this period, the results of earlier work (3) would indicate

that wear rates can be determined with confidence. The closed-loop operation

would ensure that the motor current and rotation speed would be close to that ex-

pected in orbit.

9.2.3 Pitch-Axis Attitude Sensing

The value + 1.3 degrees due to elliplicity is listed in Table 4.3-1 under the

column titled "Uncompensated Known Angular Errors. " It is recommended that

further work be done to determine the merits of an attitude-sensing system which

would remove this known pitch-angle variation. One of the requirements to be con-

sidered is that, in the process of removing the known uncompensated error, the

device should not introduce unknown or random error which is significantly greater

than the ÷ 0.52 3-a error imposed by the present sensing technique.

Consideration should be given to the performance of the sensor when the elliplicity

is in the expected ranges as experienced by all Delta-launched spacecraft and not

merely the 3 _ value of 0.013.
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9.2.4 Alternate Sources {or Pitch-Axis-Stabilization Control Motor

Several designs for brushless d-c motors are under development, and at

least one is available as a standard item. These are motors whose speed-torque

characteristics are similar to those of the Printed or Inland units, but which do not

use brushes to achieve commutation. For this reason they are evaluated for pos-

sible use as the flywheel drive motor.

All brushless motors under consideration have a permanent magnet rotor and a

wound stator. As the rotor turns, it is necessary to direct current flow in the

various stator windings such that the resultant field flux is displaced 90 ° from the

rotor flux. If this is done at all speeds and for any angular position of the rotor,

the torque output is precisely the same as would be obtained from a brush-type
motor. Several different techniques for brushless commutation have been de-

veloped and are represented in the following designs.

9.2.4.1 Sperry.Farragut

Sperry-Farragut has available a high-speed instrument motor (11), and

has proposed a low speed torquer whose characteristics are identical to the Inland

T-1352(12). The commutation technique utilizes a light-beam that rotates with the

rotor and illuminates, in sequence, photo-conductive diodes mounted on the stator.

The diodes, in turn, operate transistor switches which gate current to the proper

stator windings.

In the high-speed design, a single light-beam, obtained by rotating a slitted shield

around a stationary lamp, is used in conjunction with six field windings. Each field

winding requires two photodiodes (one for each direction of rotation), five transis-

tors, and eight resistors, or a total of 90 components for the six windings. In ad-

dition, six blocking diodes (external to the switching circuitry) are necessary, so

that a total of 96 components, 42 of which are active, must be used to replace a

brush-commutator set.

This particular design has a rated stall-torque of 2.7 ounce-inches and a no-load

speed of 3900 rpm. Hence, a gear train would be necessary to make the motor com-

patible with the flywheel-drive requirements. On this basis, the only possible

reason to recommend it over an ordinary two-phase instrument servomotor, which

is also brushless, is its power efficiency, which should be twice as high. However,

it is doubtful whether the higher efficiency is worth the price of the larger number

of extra components. With the extra parts count and gear train taken together,

there would appear to be no distinct advantage at all over the Inland brush-type
motor.

The torquer configuration proposed by Sperry-Farragut is quite similar to the model

just discussed in that it uses six field windings and the corresponding number of

associated photo-diodes and transistor switches. However, the windings are ar-

ranged somewhat differently, and the rotating light-shield has five slits, each 12 °
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wide. This arrangementresults in 30commutationsper revolution which is com-
parableto conventionaltorquer operation.

Althoughthe Sperry-Farragut doesnot havesufficient stall-torque capability to
meetpresent FSMTMSrequirements, there is no reasonwhystraightforward de-
sign changescouldnot adaptit for this application. As far as is known,however,
noworking modelshavebeenbuilt or tested, sothe actualperformancecharac-
teristics of this designare notpresently known.

9.2.4.2 Inland Brushless Direct-Drive Torque Motor

In the Inland Motor Corporation design, only two field windings (placed

90 electrical degrees apart) are used. These are wound to create flux distributions

which, for constant current, are proportional to sin _ and cos _ respectively, where

is the angular electrical displacement of the rotor. The current in the windings

is controlled by a resolver (of the differential-transformer type) that generates

signals also proportional to sin _ and cos _. These signals are amplified, and cur-

rent proportional to them is sent through the sine and cosine field windings. Thus,
the torque interaction between the rotor and field is proportional to sin2 _ + cos 2 :_

(i. e., it is constant for any rotor position)(13).

In this arrangement, the control system error would be in the form of an amplitude-

modulated a-c signal which is applied to the primary of the resolver. The outputs

must be demodulated and phase-detected before current amplification can take place.

Thus, the components required to replace commutator brushes are: a signal modu-

lator; a differential-transformer type resolver; two demodulators and phase detec-

tors; and two power amplifiers. In a conventional system, only one of these com-

ponents, a power amplifier, would be necessary.

9.2.4.3 Bendix Resolver-Fecl Torquing System

The Bendix system(14) is essentially identical to the Inland Brushless tor-

quer in that an integrally-mounted resolver is used to control the direction of stator

flux. Maximum torque-interaction with the rotor is assured by mounting the re-

solver with the proper phase relative to the rotor. Initially it was proposed to use

resolvers of the type with electrically-excited rotors. This arrangement is un-

satisfactory because slip rings would be required to supply the excitation power.

Later proposals, however, have included variable-reluctance type resolvers which

are less accurate, but which do not require rotor excitation.

Being so similar to the Inland design, it is most likely that the same auxiliary

equipment listed in the previous section would be required to operate the motor.

As far as is known, the Bendix brushless motor is presently under development,

but no data as to operating characteristics or performance capability are presently

available.
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9.2.4.4 Lear Siegler Brushless DC Motor

Lear Siegler, Power-Equipment Division is developing a motor (15} which

makes use of a novel switching device, called the Magristor. This element has the
characteristic of changing its resistance in the presence of a magnetic field. Such

elements placed around the stator are used to sense the rotor's field, and hence

the rotor's position. As the field moves past the Magristor, its resistance is

lowered (by as much as 50 to 1), and this change causes a silicon controlled-

rectifier to fire, thereby gating current through the appropriate field winding.

This system is exactly analogous to the Sperry-Farragut arrangement and, as

such, would require approximately the same number of additional components.

Thus far the only information available is for a development power unit not in-

tended for control-system application. Models suited for use in servo systems

have not been reported, and their status, if any, is presently unknown.

Table 9.2-1 is a summary comparison of several brushless DC motors. All re-

quire a considerable number of additional electronic components in order to elim-

inate the brush-commutator arrangement in conventional motors. The only unit

available as a standard item is very poor in this respect because it also requires

a gear train. Other units which exhibit somewhat less complication (the Inland

and Bendix designs} are still in the development stage and, consequently, specific

details concerning weight, power efficiency, stall-torque capability, and operating
characteristics do not exist.

Both theoretical and laboratory results were given previously(8) which indicate

that conventional brush-systems operate reliably in lubricant-vapor atmospheres.

It was also shown that such atmospheres are easily maintained for extended dur-

ations. Therefore, in light of their inadequate state of development and increased

complexity, it is presently felt that brushless DC motors do not represent a supe-

rior design choice, and the conventional brush-type motor is recommended.

9.2.5 Computer Analysis

To arrive at design values for the study it was necessary to make some

simplifying assumptions as to the effect of moment-of-inertia distribution. In

some cases, for the value of/2 and/3 (which are the yaw and roll inertia values

respectively}, the geometric mean, I213, was used in the dynamic equations. It

was also assumed that the roll, yaw and pitch axes were principal axes. It is

recommended that a computer study be performed in the next phase of the program

which utilizes the three values of moment-of-inertia and displace them from the

spacecraft roll, pitch and yaw axes by the amount of tolerances anticipated. The

tolerances are associated with the dynamic-balancing sensitivities in the yaw-axis

case, and the ability to measure or compute the location of the other two principal

axes. In all cases, the displacements should be in the range of 1° or less.
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TABLE 9.2-1. COMPARISONOF BRUSHLESSD-C MOTORS

MOTOR

Sperry-

Farragut

Instrument

Motor

Sperry-

Farragut

Torquer

Inland

Direct Drive

Torque Motor

Bendix

Resolver-Fed

Torquer

Lear, Siegler

Magristor

PRINCIPLE OF

OPERATION

Rotating light

beam. Photo-

diode sensors.

Rotating light

beam. Photo-

diode sensors.

Sine and

cosine field

windings.

Current con-

trolled by

output of

shaft mounted

resolver

Current in

field wind-

ings con-

trolled by

output of

shaft- mounted

resolver.

Rotating

flux field

sensed by

Magristor

components.

SCR's used as

current gates.

STA TUS OR

AVAILA BILITY

Available as a

standard unit.

In propoeal

stage, none

have been

built.

Prototype

models have

been built.

Not a stand-

ard item.

Under develop-

meat.

Prototype

power unit

has been

built.

No servo-

motors have

been devel-

oped.

COMMENTS

Uses no brushes.

Has power efficiency

approaching ordinary

brush-type motors.

Light source can be made

I very reliable.
Uses 96 components (42

active) to replace brush-

commutator arrangement.

Requires gear train to

meet power specification,

but cannot meet stall

torque specification.

Uses no brushes.

Has power efficiency

approaching ordinary

brush-type motors.

Light source can be made

very reliable.

Uses 96 components (42

active) to replace brush-

commutator arrangement.

Direct drive requires no

gear train.

Actual operating character-

istics unknown, since none

have been built or tested.

Uses no brushes.

Direct drive, no gear train

necessary.

Power efficiency somewhat

lower than conventional

torquer.

Requires two power ampli-

fiers, two demodulators,

two phase detectors and

one signal modulator.

Can be made to operate

without brushes.

Direct drive.

Power efficiency somewhat

lower than conventional

I torquer.

Requires two power ampli-

fiers, two demodulators,

two phase detectors and

one signal modtdator.

i Uses no brushes.

Would have power efficiency

approaching conventional

brush-type motors.

' Would require large number

of components (similar to

Sperry-Farragust arrange-

ment).

Actual operating charac-

teristics unknown.
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Another goal of the computeranalysiswouldbeto discoverpossible sourcesof
interaction betweenaxeswhichcouldresult in larger errors for alignmentthan
thosecomputedin the study. Of particular interest wouldbemechanismsby which
torques aboutthepitch axis canproducesensiblemotionaboutthe roll or yaw
axes. In addition, all torques transverse to thepitch axis must be takeninto
accountin developingthe dynamicmodel.

It is likely that a hybrid computerwill berequired for the study. Theanalog
portion wouldsimulatethepitch-axis performance, while the digital wouldbe
usedto solvethe Euler equationsof the spacecraft.

9.2.6 Data Transmission

During the study, a brief investigation was made of several optical tech-

niques for scanning the earth with the IR bolometers. Figure 7.2-3 is a sketch

of at least one method. It is recommended that this effort be pursued further as

a possible replacement for slip rings or rotary transformers which are required

when the sensors are mounted directly on the rotating flywheel.

The flywheel will carry a total of six horizon sensors and the associated output

amplifiers, thus requiring both signal and power transfer across the rotary inter-

face between the flywheel and the main structure. Specifications for the transfer

are as shown in Table 9.2-2.

TABLE 9.2-2. SIGNAL AND POWER TRANSFER SPECIFICATIONS

Parameter Signal Channels Power Channel
(Each) (Total)

Voltage Range

Current

Allowable noise

Bandpass

0 - 5 volts

0. 05 ma

< 10 mv

50-500 cps

24.5 volts

25 ma

<50 mv

d-c

Both slip rings and rotary transformers can be used to meet these requirements.

9.2.6.1 Slip Rings

The two major problem areas associated with the use of conventional slip

rings are those of wear and noise under vacuum conditions. However, experience

has shown that a suitable choice of materials and proper lubrication technique will

assure successful performance. The four materials combinations shown in Table

9.2-3 all have demonstrated reliable operation at low pressure ambients.
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TABLE 9.2-3. MATERIALS COMBINATIONS

Brush Slip Ring Lubrication Technique Re terence

Paliney 7 Coin Gold Oil Vapor Atmosphere Unpublished work

performed at AED

80% Ag, 15% C Coin Silver Dry (MoS2) (16)

5% MoS 2

50-80% Ag Copper

50-20% C Silver

Gold Oil Vapor Atmosphere (4)

Ag - MoS 2 Silver Dry (MoS2) (17)

The Paliney 7 brush/Coin Gold ring combination has been used at the RCA Astro-

Electronics Division in the testing program previously described. (4) Almost 4

months of operation at ambient pressures of 10-5 to 10-3 mm Hg has been ac-

cumulated. Signal quality has not deteriorated and no wear has been noticed. The

ambient pressures were maintained by means of a reservoir of oil having a vapor

pressure in the desired range. The same technique can also be applied to Silver-

Graphite brushes running on Gold, Silver, or Copper slip rings, because laboratory

tests indicate that the noise and wear associated with high vacuum do not appear un-

til pressures of 10 -6 mm or lower are reached. Oil vapor atmospheres of 10 -5 mm

or higher, which are very readily maintained for as long as desired, provide adequate

lubrication for these materials.

Rolling-element slip rin_s have been suggested as an alternative to conventional ring-
wiper arrangements. (18) These devices are designed to operate in hard vacuums

(10 -s mm of Hg 48 and lower), and are dry lubricated. The best results were obtained

using gold plated 440C balls and races in a standard thrust-bearing arrangement, a

retaining ring machined from an 85% Gold, 15% MoS 2 compact, and an initially ap-

plied MoS 2 suspension. A life of 115 x 106 revolutions has been reported for this

combination. However, the use of dry-lubricated systems is always suspect because

the testing under space-simulated conditions is extremely difficult. The vacuum

which occur in spacecraft where no attempt has been made to maintain an atmosphere

are apt to be considerably lower than those practicably attainable in environmental

test facilities. Unless unforseen problems with vapor-lubricated systems are un-

covered, this is the recommended approach.

9.2.6.2 Rotary Transformers

Rotary transformers (19) are analogous to static transformers, except that

the primary winding rotates concentric to the secondary, and the mutual inductance

is not a function of angular position. Thus, signals may be transferred from rotating
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parts with no contact whatsoever. However, the simultaneous transfer of d-c signals
or power is not possible, and the input-output linearity of the device is poor in the low-
frequency range.

The signal frequency content indicated in Table 9.2-2 can be accommodated by standard

designs without too great an increase in unit size. There is no modulation problem due

to run out, and cross-talk at such low frequencies is negligible. The d-c power can-
not be transferred unless it is chopped and then rectified after being transformed; how-

ever, the power for all six horizon sensors and amplifiers can be sent through a single
chopper-transformer-rectifier combination.

No definite recommendations as to the use of rotary transformers can be made at this

time. Although their characteristics are reasonably well suited for this application,

they are a relatively new device and the performance has not yet been adequately proven.

A test program for this purpose should be undertaken. It is quite possible that a hybrid
system will prove optimum, where rotary transformers are used to transmit the horizon

sensor output signals, and a brush-slip ring arrangement (large area Silver-Graphite
brushes) is used to transmit the d-c power.

9.2-8



Section 10.0

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

BIBLIOGRAPHY

Monthly Progress Report No. 1, Contract No. NAS5-3886, Flywheel Sta-

bilized, Magnetically Torqued Attitude Control System for Meteorological

Satellites, dated July 10, 1964, RCA Astro-Electronics Division to NASA,

Goddard Space Flight Center.

Monthly Progress Report No. 2, Contract No. NAS5-3886, Flywheel Sta-

bilized, Magnetically Torqued Attitude Control System for Meteorological

Satellites, dated August 10, 1964, RCA Astro-Electronics Division to NASA,

Goddard Space Flight Center.

Monthly Progress Report No. 3, Contract No. NAS5-3886, Flywheel Sta-

bilized, Magnetically Torqued Attitude Control System for Meteorological

Satellites, dated September 10, 1964, RCA Astro-Electronics Division to

NASA, Goddard Space Flight Center.

Monthly Progress Report No. 4, Contract No. NAS5-3886, Flywheel Sta-

bilized, Magnetically Torqued Attitude Control System for Meteorological

Satellites, dated September 18, 1964, RCA Astro-Electronics Division to

NASA, Goddard Space Flight Center.

Statement of Work and Specification for a Study of Flywheel Stabilized,

Magnetically Torqued Meteorological Satellites, Prepared by NASA Aero-

nomy and Meteorology Division, Instrumentation Branch, Goddard Space

Flight Center, Greenbelt, Maryland, dated February 1964.

Proposal for a Study Program: Advanced Stabilization for Nimbus, Prepared

by Astro-Electronics Division, Defense Electronic Products, Radio Corp-

oration of America, RCA Proposal No. 63096-A, dated January 22, 1964.

Internal Correspondence, RCA, Memo to I. Brown from H. Perkel, Subject:

"Initial Alignment of FSMTMS", dated August 2, 1964.

Thompson, "Introduction to Space Dynamics", John Wiley, New York, 1961.

C. Usiskin and R. Wilkes, "Measuring the Magnetic Dipole of a Satellite",

presented at the Sixth Symposium on Ballistic Missile and Space Technology,

Los Angeles, California, August 1961.

i0.0-I



(20)

(10) R. Moskowitz and R. Lynch, "Magnetostatic Measurement of Spacecraft

Magnetic Dipole Moment" IEEE Transactions on Aerospace, Vol. 2, No 2,

April 1964.

(11) Studer, P. A., "Development of a Brushless DC Motor for Satellite Ap-

plication", NASA TN D-2108, February, 1964.

(12) Sperry-Farragut Co., "Unsolicited Proposal for a Brushless DC Torquer",

Publication No. 3100 - P 178. Submitted to Marshall Space Flight Center,

NASA, Huntsville, Ala., August, 1963.

(13) Kollmorgen Corporation, "Brushless Direct Drive Torque Motor", by H.D.

Wintle, Report No. ER450.32, May 20, 1963.

(14) Bendix Corporation, "Resolver Fed Torquing Systems", By S. Groves and

J. Mulligan, Engineering File MT-1242, October 15, 1962.

(15) Lear Siegler, Inc., Power Equipment Div., "Principles of LSi Brushless

DC Motor".

(16) Burns, L. F., and Williams, A.G. "Operation of Slip Ring Assemblies in a

Vacuum Chamber" ARO Inc., Arnold Engineering Development Center USAF

TM 62-24 Nov., 1962

(17) Blackmon, P.H., Clause, F.J., et.al. "Materials Evaluation Under High
Vacuum and Other Satellite Environmental Conditions" Lockheed Missiles

and Space Division Technical Report. ASTIA No. 270279

(18) Devine, E.J., "Rolling Element Slip Rings for Vacuum Application" NASA

TN D-2261 April 1964.

(19) The ROTOTRAN rotary transformer is a proprietary design of Data Technology,

Inc. Watertown, Mass.

Weinreb, M.B., "Results of TIROS II Ball Bearing Operation In Space"

Meteorology Branch, Goddard Space Flight Center, NASA, Washington

23, D.C., March, 1961.

10.0-2 NASA-Langley, 1985 CR-232


